Spring 2011

Sample Exam

Full Name:
On my honor, I have neither given nor received unauthorized aid on this examination.

Signature: \qquad
This is a 50 minute exam. There are 4 problems, worth a total of 40 points. Remember to show your work. Answers lacking adequate justification may not receive full credit. You may use one letter-sized sheet (the same size as the lecture notes) of your own notes and a pocket calculator. You may not use any books, other references, or text-capable electronic devices.

1. Suppose $Y_{1}, Y_{2}, \cdots, Y_{100}$ is a random sample from a population which is normal with mean μ and variance σ^{2}. Suppose $\sigma^{2}=1600$.
(a) Provide the standard unbiased estimate of μ.
(b) Provide the mean squared error of this estimate. You need to provide an explicit number.
(c) Provide $P(|\bar{Y}-\mu|<0.49)$. You need to provide an explicit number.
2. Suppose $Y_{1}, Y_{2}, \cdots, Y_{100}$ is a random sample from a population which is normal with mean μ and variance σ^{2}. Note that the standard unbiased estimate for σ^{2} is given by the adjusted sample variance S^{2}.
(a) Provide the mean squared error of S^{2}.
(b) What is the distribution of $\frac{(n-1) S^{2}}{\sigma^{2}}$?
(c) Provide $E\left[S^{4}\right]$.

Hint: Use the fact that if X has a Gamma distribution with parameters α and β, then $E[X]=\alpha(\alpha+1) \beta^{2}$.
[5 pts]
3. Assume that $Y_{1}, Y_{2}, \cdots, Y_{100}$ is a random sample from an exponential distribution with mean θ. It can be established that $\frac{2}{\theta} \sum_{i=1}^{n} Y_{i}$ is a pivotal quantity for θ, and has a χ^{2}-distribution with 200 degrees of freedom.
(a) Use the pivotal quantity $\frac{2}{\theta} \sum_{i=1}^{n} Y_{i}$ to derive a 95% confidence interval for θ. Use the fact that if W has a χ^{2}-distribution with 200 degree of freedom, then $P(1 \leq W \leq 235)=0.95$.
(b) If a particular sample has $\bar{Y}=80$, provide a confidence interval for θ. You need to provide explicit numbers.
[3 pts]
4. Assume that $Y_{1}, Y_{2}, \cdots, Y_{100}$ is a sample of size n from a gamma-distributed population with parameters $\alpha=2$ and unknown β. It can be established that $\frac{2}{\beta} \sum_{i=1}^{n} Y_{i}$ is a pivotal quantity for β, and has a χ^{2}-distribution with 400 degrees of freedom.
(a) Use the pivotal quantity $\frac{2}{\beta} \sum_{i=1}^{n} Y_{i}$ to derive a 95% confidence interval for β. Use the fact that if W has a χ^{2}-distribution with 400 degree of freedom, then $P(1 \leq W \leq 448)=0.95$.
(b) If a particular sample has $\bar{Y}=200$, provide a confidence interval for β. You need to provide explicit numbers.

