STA 4322

Spring 2015

Sample Exam

Full Name:

On my honor, I have neither given nor received unauthorized aid on this examination.

Signature: _

This is a 50 minute exam. There are 4 problems, worth a total of 40 points. **Remember to show your work.** Answers lacking adequate justification may not receive full credit. You may use one A4-sized sheet (both sides) of your own notes and a pocket calculator. You may *not* use any books, other references, or text-capable electronic devices.

- 1. Suppose that the average life of an electronic component is believed to be 10 years. A researcher claims that due to recent improvements in the production process, the average life is now more than 10 years. To verify this claim, a random sample of 100 components is taken from the population. The observed sample mean is 16 years, and the observed sample standard deviation is 7.
 - (a) Formulate the above problem as a statistical hypothesis testing problem. [2 points]
 - (b) What is an appropriate statistic to use the standard test for the above testing problem?

[3 points]

- (c) Using the standard level-0.05 test for this problem, is there enough evidence to accept the researcher's claim? Use the fact that $z_{0.95} = 1.68$. [5 points]
- 2. Suppose Y_1, Y_2, \dots, Y_{36} is a random sample from a population with mean μ . We want to test $H_0: \mu = 18$ vs. $H_A: \mu > 18$ with level 0.05. Suppose the observed sample standard deviation is 5.
 - (a) With the current sample, evaluate the Type II error probability for the standard level-0.05 test at $\mu_A = 20$. You can leave your answer in terms of the Φ function. Use $z_{0.95} = 1.68$. [5 points]
 - (b) What is the minimum sample size required to obtain $\beta(\mu_A) = 0.01$? Use $z_{0.99} = 2.3$. [5 points]
- 3. Suppose we are interested in testing $H_0: \theta = 10$ vs. $H_A: \theta > 10$, for data from some population with unknown parameter θ . It is known that there is an estimator $\hat{\theta}$ such that $\frac{\hat{\theta}-\theta}{\hat{SE}(\hat{\theta})}$ has an approximate Normal(0, 1) distribution.
 - (a) For what values (large or small) of $\hat{\theta}$ will we reject the null hypothesis? [2 points]
 - (b) If the observed value of $\hat{\theta}$ is 11 and $\hat{SE}(\hat{\theta})$ is 5, what is the *p*-value of the standard test? You can leave your answer in terms of the Φ function. [5 points]
 - (c) Based on this *p*-value, will you reject H_0 at level-0.01? You may use the fact that $1 \Phi(0.2) > 0.01.$ [3 points]

- 4. Suppose Y_1, Y_2, \dots, Y_n is a random sample from the Exponential(θ) density. Consider testing $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_A$, where $\theta_A < \theta_0$.
 - (a) Use the Neymann-Pearson lemma to show that the most powerful level- α test rejects for small values of $\sum_{i=1}^{n} Y_i$. You do not need to solve for the cutoff point of the rejection region. [7 points]

[3 points]

(b) Does the rejection region depend on θ_A ?