## STA 4322

Spring 2020

## Sample Exam

Full Name:
On my honor, I have neither given nor received unauthorized aid on this examination.
Signature: $\qquad$
This is a 50 minute exam. There are 4 problems, worth a total of 40 points. Remember to show your work. Answers lacking adequate justification may not receive full credit. You may use one A4-sized sheet (both sides) of your own notes and a pocket calculator. You may not use any books, other references, or text-capable electronic devices.

1. Let $X_{1}, X_{2}, \cdots, X_{m}$ denote a random sample from the exponential density with mean $\theta_{1}$, and $Y_{1}, Y_{2}, \cdots, Y_{n}$ denote an independent random sample from an exponential density with mean $\theta_{2}$. Find the likelihood ratio criterion for testing $H_{0}: \theta_{1}=\theta_{2}$ vs. $H_{A}: \theta_{1} \neq \theta_{2}$. [10 points]
2. The median sale prices for new single-family houses from 1972 to 1979 are given by $27.6,32.5,35.9,39.3,44.2,48.8,55.7,62.9$ (in thousands) respectively. Let $Y_{i}$ denote the median sales price, and $X_{i}=i$ for year $i$, as $i$ varies from 1972 to 1979 . Suppose we fit the linear model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

for $i=1972, \cdots, 1979$, where the errors $\epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{8}$ are assumed to be independent and identically distributed with mean 0 and variance $\sigma^{2}$.
(a) Find the least squares estimators of $\beta_{0}$ and $\beta_{1}$.
(b) Find the estimate of the error variance $\sigma^{2}$.
3. Consider the same setup as Problem 2 above, and assume that the errors are normally distributed.
(a) Find the $90 \%$ confidence interval for $\beta_{0}$. Use $t_{6,0.95}=1.72$.
(b) Find the $95 \%$ confidence interval for $\beta_{0}+\beta_{1}$. Use $t_{6,0.975}=2$
4. Suppose we have data $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \cdots,\left(X_{100}, Y_{100}\right)$, and we fit a linear model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

for $i=1,2, \cdots, 100$. Suppose $\bar{X}=10, \bar{Y}=30, \sum_{i=1}^{100}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=50$, $\sum_{i=1}^{100}\left(X_{i}-\bar{X}\right)^{2}=70$, and $\sum_{i=1}^{100}\left(Y_{i}-\bar{Y}\right)^{2}=40$.
(a) Find the values of the least squares estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.
(b) Find the $95 \%$ confidence interval for $\beta_{0}+35 \beta_{1}$. Use $t_{98,0.975}=1.96$.

