STA 4322

Spring 2020

Quiz 2

Full Name: _

On my honor, I have neither given nor received unauthorized aid on this quiz

Signature: _

This is a 10 minute quiz. There are 5 multiple choice problems, each having EXACTLY ONE correct answer. You may *not* use any books, other references, or text-capable electronic devices.

- 1. If Y_1, Y_2, \dots, Y_n is a random sample from a Normal population with mean μ and variance σ^2 . Then the distribution of the sample mean \overline{Y} is
 - (a) Normal.
 - (b) Gamma.
 - (c) χ^2 .
 - (d) *t*.
- 2. In Problem 1 above, recall that the adjusted sample variance estimator S^2 is given by $\frac{1}{n-1}\sum_{i=1}^{n}(Y_i-\bar{Y})^2$. The distribution of $\frac{(n-1)S^2}{\sigma^2}$ is given by
 - (a) Normal.
 - (b) χ^2 with n-1 degrees of freedom.
 - (c) Poisson.
 - (d) t.
- 3. The MSE of S^2 is given by is given by
 - (a) $\frac{2\sigma^4}{n-1}$.
 - (b) σ^4 .
 - (c) σ^2 .
 - (d) $(n-1)\sigma^2$.

4. In Problem 1, the distribution of $\frac{\sqrt{n}(\bar{Y}-\mu)}{S}$ is

- (a) Normal.
- (b) Gamma.
- (c) t with n-1 degrees of freedom.
- (d) χ^2 with *n* degrees of freedom.

- 5. If $X \sim \text{Normal}(\mu, \sigma^2)$, then the distribution of $Z = (X \mu)/\sigma$ is given by
 - (a) Normal(0,1).
 - (b) χ^2 -distribution with n-1 degrees of freedom.
 - (c) $N(0, \sigma^2)$.
 - (d) χ^2 -distribution with *n* degrees of freedom.