STA 4322

Spring 2020

Solutions to Quiz 1

- 1. If Y_1, Y_2, \dots, Y_n is a random sample from a population with mean μ and variance σ^2 , and \bar{Y} denotes the sample mean, then the MSE of \bar{Y} is given by
 - (a) σ^2 .
 - (b) *n*.
 - (c) $\frac{\sigma^2}{n}$.
 - (d) $n\sigma^2$.

Answer: (c): See lecture notes.

- 2. The sample mean estimator \bar{Y} (in Problem 1 above) is unbiased. This statement is
 - (a) True.
 - (b) False.

Answer: (a): See lecture notes.

- 3. In Problem 1 above, $E[\bar{Y}^2]$ is given by
 - (a) μ^2 .
 - (b) $\mu^2 + \frac{\sigma^2}{n}$.
 - (c) σ^2 .
 - (d) $\frac{\sigma^2}{n}$.

Answer: (b):

$$E[\bar{Y}^2] = V(\bar{Y}) + (E[\bar{Y}])^2 = \frac{\sigma^2}{n} + \mu^2.$$

4. In Problem 1 above, let

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2.$$

Then $E[\hat{\sigma^2}]$ is given by

- (a) σ^2 .
- (b) $n\sigma^2$.
- (c) $\frac{n}{n-1}\sigma^2$.
- (d) $\frac{n-1}{n}\sigma^2$.

Answer: (d): See lecture notes.

- 5. In Problem 1 above, the probability distribution of \bar{Y} is always Poisson. This statement is
 - (a) True.
 - (b) False.

Answer: (b): No assumption about the distribution of Y_1, Y_2, \dots, Y_n has been made in Problem 1.