Solutions to Homework 1

2.10

a. The two jobs are identical, so the order does not matter when selecting two applicants, the sample space is
$S=\{(J i m, D o n),(J i m, M a r y),(J i m, S u e),(J i m, N a n c y),(D o n, M a r y),(D o n, S u e)$,
(Don, Nancy), (Mary, Sue), (Mary, Nancy), (Sue, Nancy)\}
b. Jim and/or Don should be selected, then
$A=\{(\mathrm{Jim}, \mathrm{Don}),(\mathrm{Jim}, \mathrm{Mary}),(\mathrm{Jim}$, Sue $),(\mathrm{Jim}$, Nancy $),($ Don, Mary $),($ Don, Sue $),($ Don, Nancy $)\}$ thus there are 7 outcomes in A.
c. exactly one in Jim and Don is selected, then
$B=\{($ Jim, Mary $),($ Jim, Sue $),(J i m$, Nancy), (Don, Mary), (Don, Sue), (Don, Nancy) $\}$
thus there are 6 outcomes in B.
d. $A \bar{B}$
e. $\bar{A}=\{($ Mary, Sue $),($ Mary, Nancy $),($ Sue, Nancy $)\}$
$A B=B=\{($ Jim, Mary $),($ Jim, Sue $),($ Jim, Nancy $),($ Don, Mary $),($ Don, Sue $),($ Don, Nancy $)\}$
$A \cup B=A=\{($ Jim, Don $),(J i m, M a r y),(J i m, S u e),(J i m, N a n c y),(D o n, M a r y),($ Don, Sue $),($ Don, Nancy $)\}$

$$
\overline{A B}=\{(\text { Jim, Don }),(\text { Mary, Sue }),(\text { Mary, Nancy }),(\text { Sue, Nancy })\}
$$

2.17

Let events
E1: black molly and guppy are chosen.
E2: black molly and goldfish are chosen
E3: black molly and neon are chosen
E4: guppy and gold fish are chosen
E5: guppy and neon are chosen
E6: goldfish and neon are chosen

Then the sample space $S=E 1 \cup E 2 \cup E 3 \cup E 4 \cup E 5 \cup E 6$. Since the girl is equally likely to choose each fish species, then

$$
P(E 1)=P(E 2)=P(E 3)=P(E 4)=P(E 5)=P(E 6)=\frac{1}{6}
$$

a. Let A denote the event that she does not choose a guppy, then $A=E 2 \cup E 3 \cup E 6$, by axiom 3 of definition 2.3,

$$
P(A)=P(E 2 \cup E 3 \cup E 6)=P(E 2)+P(E 3)+P(E 6)=\frac{1}{2}
$$

b. $P(E 5)=\frac{1}{6}$
c. Let B denote the event that she has either a black molly or a neon but not both, then

$$
P(B)=P(E 1 \cup E 2 \cup E 5 \cup E 6)=P(E 1)+P(E 2)+P(E 5)+P(E 6)=\frac{2}{3}
$$

2.18

Because all applicants are equally qualified, then all outcomes in the sample space should be assigned to the same probability, $\frac{1}{10}$.
a. the event that both males are selected has only one outcome, (Jim, Don), thus

$$
P(\text { both males are selected })=1 \cdot \frac{1}{10}=0.1
$$

b. A has 7 outcomes, thus

$$
P(\text { at lease one male is selected })=P(A)=7 \cdot \frac{1}{10}=0.7
$$

c. the event at lease one female is selected has all outcomes in S except (Jim, Don)

$$
P(\text { at least one female is selected })=9 \cdot \frac{1}{10}=0.9
$$

2.20.
30% of all potential customers buy products from outlet alone, thus, for a given potential
customer,
$0.3=P$ (the customer buys from outlet 1 only)
$=P$ (the customer buys from outlet 1 and the customer does not buy from outlet 2)

$$
=P(A \bar{B})
$$

40% buy from outlet 2 alone, then we have $P(\bar{A} B)=0.4$
10% of potential customers buy from both 1 and 2 , then $P(A B)=0.1$
a.

$$
\begin{aligned}
P(\text { the customer buys from outlet } 1) & =P(A) \\
& =P(A B)+P(A \bar{B}) \\
& =0.1+0.3 \\
& =0.4
\end{aligned}
$$

b.

$$
\begin{aligned}
P(\text { the customer does not buy from outlet } 2) & =P(\bar{B}) \\
& =1-P(B) \\
& =1-P(A B)-P(\bar{A} B) \\
& =1-0.1-0.4 \\
& =0.5
\end{aligned}
$$

c.
$P($ the customer does not buy from outlet 1 or from outlet 2$)=P(\bar{A} \cup \bar{B})$

$$
\begin{aligned}
& =P(\overline{A \cap B}) \text {, we use DeMorgan's law here } \\
& =1-P(A B) \\
& =1-0.1 \\
& =0.9
\end{aligned}
$$

d.
$P($ the customer does not buy from outlet 1 and from outlet 2$)=P(\bar{A} \cap \bar{B})$

$$
\begin{aligned}
& =P(\overline{A \cup B}), \text { we use DeMorgan's law here } \\
& =1-P(A \cup B) \\
& =1-P(A)-P(\bar{A} B) \\
& =1-0.4-0.4 \\
& =0.2
\end{aligned}
$$

2.21

For the first person who shows up tomorrow to donate blood,
Let B denote the event that blood type is O^{+}
Let C denote the event that blood type is O
Let D denote the event that blood type is O^{-}
Let E denote the event that blood type is A^{+}
Let F denote the event that blood type is A
Let G denote the event that blood type is A^{-}
Events B,D,E,G are mutually exclusive, Then,
a. $P(B)=\frac{1}{2}$
b. $P(C)=P(B)+P(D)=\frac{1}{2}+\frac{1}{11}=\frac{13}{22}$
c. $P(F)=P(E)+P(G)=\frac{1}{4}+\frac{1}{20}=\frac{3}{10}$
d. $P(G \cup D)=P(G)+(D)=\frac{1}{20}+\frac{1}{11}=\frac{31}{220}$
e. $P(\bar{E} \cap \bar{B})=P(\overline{E \cup B})=1-P(E \cup B)=1-P(E)-P(B)=1-\frac{1}{4}-\frac{1}{2}=\frac{1}{4}$

2.23

If one such assembly is randomly chosen, let A denote the event that the assembly has defects in shaft, B denote the event that the assembly has defects in the bushing, then we know that

$$
P(A)=0.1, P(B)=0.08, P(A B)=0.02
$$

a.

$$
\begin{aligned}
P(\text { the assembly has only a bushing defect }) & =P(\bar{A} B) \\
& =P(B)-P(A B) \\
& =0.08-0.02 \\
& =0.06
\end{aligned}
$$

b.

$$
\begin{aligned}
P(\text { the assembly has a shaft or bushing defect }) & =P(A \cup B) \\
& =P(A)+P(B)-P(A B) \\
& =0.1+0.08-0.02 \\
& =0.16
\end{aligned}
$$

c. If the assembly has only one of two types of defects, it has only the shaft defect or has only the bushing defect, we can denote them by $A \bar{B}$ and $\bar{A} B$, they are mutually exclusive, then
$P($ the assembly has only one of two types of defects $)=P(A \bar{B} \cup \bar{A} B)$,

$$
\begin{aligned}
& =P(A \bar{B})+P(\bar{A} B) \\
& =(P(A)-P(A B))+(P(B)-P(A B)) \\
& =0.08+0.06 \\
& =0.14
\end{aligned}
$$

d.
$P($ the assembly has no defects in either shafts or bushings $)=P(\bar{A} \cap \bar{B})$

$$
\begin{aligned}
& =P(\overline{A \cup B}) \\
& =1-P(A \cup B) \\
& =1-0.16 \\
& =0.84
\end{aligned}
$$

2.35

The two customers are denoted by A and B
a. the sample space is
$S=\{($ A uses door I, B uses door I), (A uses door I, B uses door II),
(A uses door II, B uses door I), (A uses door II, B uses door II)\}
b. all outcomes have the same probability, $\frac{1}{4}$
$P($ both customers use door I$)=P(\{($ A use door I, B use door I$)\})$

$$
=\frac{1}{4}
$$

c.
P (customers use different doors) $=P(\{($ A use door I, B use door II), (A use door II, B use door I) $\})$

$$
\begin{aligned}
& =\frac{1}{4} \cdot 2 \\
& =0.5
\end{aligned}
$$

