We need to assume each outcome is equally likely for each person to choose each door. Each person has four choices, thus there are $4^{3}=64$ possible outcomes for three people to enter the building. If x people choose door I, there are $\binom{3}{x}$ ways to specify the x people, and for the remaining $3-x$ people, each of them has 3 choices to enter the building. Thus there are $\binom{3}{x} \cdot 3^{3-x}$ possible outcomes if x people choose entrance one, the probability of $X=x$ is

$$
P(X=x)=\frac{\binom{3}{x} 3^{3-x}}{64}, x=0,1,2,3
$$

Then $p(0)=\frac{27}{64}, p(1)=\frac{27}{64}, p(2)=\frac{9}{64}, p(3)=\frac{1}{64}$
4.6
(a) For a given structure fire, the probability that it is caused by cooking is

$$
p=\frac{29706}{52006}=0.5712
$$

Now if x out of four are caused by cooking, there are $\binom{4}{x}$ ways to specify the x fires that are caused by cooking, and each outcome is equally likely, with probability $p^{x}(1-p)^{4-x}$, thus the probability of $X=x$ is

$$
P(X=x)=\binom{4}{x} p^{x}(1-p)^{4-x}, \quad x=0,1,2,3,4
$$

Then we have
x
0
0.0338
1
0.1801
2
0.3599
3
0.3197
4
p (x)
0. 1065
(b) The probability of interest is

$$
P(X \geq 1)=1-P(x=0)=1-0.0338=0.9662
$$

4.7
(a) X can take value $0,1,2,3,4,5,6$. Let Y denote the number of sales in the first day, Z denotes the number of sales in the second day, Y and Z are independent. Then
$P(X=0)=P(Y=0, Z=0)=P(Y=0) \cdot P(Z=0)=0.5 \cdot 0.5=0.25$
$P(X=1)=P(Y=1) P(Z=0)+P(Y=0) P(Z=1)=0.3 \cdot 0.5+0.5 \cdot 0.3=0.3$
$P(X=2)=P(Y=2) P(Z=0)+P(Y=0) P(Z=2)+P(Y=1) P(Z=1)$
$=0.15 \cdot 0.5+0.5 \cdot 0.15+0.3 \cdot 0.3$
$=0.24$

$$
\begin{aligned}
P(X=3) & =P(Y=3) P(Z=0)+P(Y=0) P(Z=3)+P(Y=1) P(Z=2)+P(Y=2) P(Z=1) \\
& =0.05 \cdot 0.5+0.5 \cdot 0.05+0.3 \cdot 0.15+0.15 \cdot 0.3 \\
& =0.14
\end{aligned}
$$

$$
\begin{aligned}
P(X=4) & =P(Y=1) P(Z=3)+P(Y=3) P(Z=1)+P(Y=2) P(Z=2) \\
& =0.3 \cdot 0.05+0.05 \cdot 0.3+0.15 \cdot 0.15 \\
& =0.0525
\end{aligned}
$$

$$
\begin{aligned}
P(X=5) & =P(Y=3) P(Z=2)+P(Y=2) P(Z=3) \\
& =0.05 \cdot 0.15+0.15 \cdot 0.05 \\
& =0.015
\end{aligned}
$$

$$
\begin{aligned}
P(X=6) & =P(Y=3) P(Z=3) \\
& =0.05 \cdot 0.05 \\
& =0.0025
\end{aligned}
$$

(b) The probability of interest is

$$
\begin{aligned}
P(X \geq 2) & =1-P(X=0)-P(X=1) \\
& =1-0.25-0.3 \\
& =0.45
\end{aligned}
$$

4.8
a. there are $\binom{4}{2}=6$ ways to choose two chips out of four in total.
$X=0$:only one possible outcome, we choose the two non-defective ones. Then

$$
P(X=0)=\frac{1}{6}
$$

$X=1$: we have chosen 1 defective and 1 non-defective, there are two ways to specify the defective one and there are two ways to specify the non-defective one, thus there are 4 possible outcomes. Then

$$
P(X=1)=\frac{4}{6}=\frac{2}{3}
$$

$X=2$: only one possible outcome, we choose the two defective ones. Then

$$
P(X=2)=\frac{1}{6}
$$

(b) The probability of interest is

$$
P(X \leq 1)=P(X=0)+P(X=1)=\frac{5}{6}
$$

4.9

For a given people who enter a blood bank, the probability that he has type O+ blood is that

$$
p=\frac{1}{3}
$$

Now if x out of three people have type $\mathrm{O}+$ blood, there are $\binom{3}{x}$ ways to specify the three people who have type $\mathrm{O}+$ blood, and each outcome is equally likely, with probability $p^{x}(1-p)^{3-x}$, thus the probability of $X=x$ is

$$
P(X=x)=\binom{3}{x} p^{x}(1-p)^{3-x}, x=0,1,2,3
$$

Then we have

x	0	1	2	3
$\mathrm{p}(\mathrm{x})$	$8 / 27$	$4 / 9$	$2 / 9$	$1 / 27$

Let $q=\frac{1}{20}$, in the same way we can derive that

$$
P(Y=y)=\binom{3}{y} q^{y}(1-q)^{3-y}, \quad x=0,1,2,3
$$

Then we have

y	0	1	2	3
$p(y)$	0.857	0.135	0.007	0.000125

(b) For $X+Y, p=\frac{1}{3}+\frac{1}{20}=\frac{23}{60}$, in the same way we can derive

$$
P(X+Y=u)=\binom{3}{u} p^{u}(1-p)^{3-u}, \quad u=0,1,2,3
$$

Then we have
u
$\mathrm{p}(\mathrm{u})$
0
0.2345
1
0.4373
2
3
0. 2718
0. 0563

4.13

X can take value in $S=\{1,2,3,4,5,6,7\}$. For $k \in S$, the probability mass function is $p(k)=P(X=k)=P($ wrong key in the first $k-1$ tries $) \cdot P($ right key in the $k t h$ try $)$

$$
\begin{aligned}
& =\prod_{i=1}^{k-1} \frac{7-i}{7-i+1} \cdot \frac{1}{7-k+1} \\
& =\frac{7-k+1}{7} \cdot \frac{1}{7-k+1} \\
& =\frac{1}{7}
\end{aligned}
$$

4.14

There are $P_{5}^{5}=5!=120$ ways to put five letters in five envelopes, each outcome has the same probability. Let X denote the exact number of letters that are placed in the correct envelope. If $X=x \in S=\{0,1,2,3,5\}$

If $X=5$, all letters are in the correct envelope, there is only one possible outcome, thus

$$
P(X=5)=\frac{1}{120}
$$

If $X=3$, there are $\binom{5}{3}=10$ ways to specify the 3 letters that are placed in the right envelope. For the remaining 2 letters and corresponding envelopes, there is only one way to put in the wrong order, thus

$$
P(X=3)=\frac{10 \cdot 1}{120}=\frac{1}{12}
$$

If $X=2$, there are $\binom{5}{2}=10$ ways to specify the 2 letters that are placed in the right envelope. For the remaining 3 letters and corresponding envelopes, there are only two ways to put all 3 in the wrong order, thus

$$
P(X=2)=\frac{10 \cdot 2}{120}=\frac{1}{6}
$$

If $X=1$, there are $\binom{5}{1}=5$ ways to specify the letter that is placed in the right envelope.
For the remaining 4 letters and corresponding envelopes, there are 9 ways to put all 4 in the wrong order, thus

$$
P(X=1)=\frac{5 \cdot 9}{120}=\frac{3}{8}
$$

Then we have

$$
\begin{aligned}
P(X=0) & =1-P(X=1)-P(X=2)-P(X=3)-P(X=5) \\
& =1-\frac{1}{120}-\frac{1}{12}-\frac{1}{6}-\frac{3}{8} \\
& =\frac{11}{30}
\end{aligned}
$$

4.22

Let X denote the number of red grouper caught by a given boat. The expect value is

$$
E(X)=\sum_{x=0}^{2} x p(x)=0 \cdot 0.2+1 \cdot 0.7+2 \cdot 0.1=0.9
$$

Now,

$$
E\left(X^{2}\right)=\sum_{x=0}^{2} x^{2} p(x)=0^{2} \cdot 0.2+1^{2} \cdot 0.7+2^{2} \cdot 0.1=1.1
$$

Then by theorem 4.3, the variance is

$$
V(X)=E\left(X^{2}\right)-(E X)^{2}=1.1-0.9^{2}=0.29
$$

The standard deviation is

$$
\sigma=\sqrt{V(X)}=0.5385
$$

4.24

a. Let X denote the number of contracts that are assigned to firm I. there are $3^{2}=9$ ways to assign two contracts to three companies.
If $X=2$, there is only one possible outcome, thus

$$
P(X=2)=\frac{1}{9}
$$

If $X=1$, there are two ways to specify which contract is assigned to firm I, and there are two ways to assign the other contract to firm II and firm III, thus

$$
P(X=1)=\frac{2 \cdot 2}{9}=\frac{4}{9}
$$

Now for $X=0$,

$$
P(X=0)=1-P(X=1)-P(X=2)=1-\frac{4}{9}-\frac{1}{9}=\frac{4}{9}
$$

Let Y denote the potential profit for firm I, then $Y=90000 X$, the expected potential profit is

$$
\begin{aligned}
E(Y) & =E(90000 X) \\
& =90000 E(X) \\
& =90000\left(2 \cdot \frac{1}{9}+1 \cdot \frac{4}{9}+0 \cdot \frac{4}{9}\right) \\
& =60000
\end{aligned}
$$

b. Let U denote the potential profit for firms I and II together, V denotes the potential profit for firm III. Then $U+V$ is the potential profit for the three companies together, thus

$$
U+V=2 \times 90000=180000
$$

(Note: here the random variable $\mathrm{U}+\mathrm{V}$ is a fixed value, it means $P(U+V=180000)=1)$

The expected value of $U+V$ is

$$
E(U+V)=180000
$$

From the result in (a), it is easy to know that $E(V)=60000$, then

$$
E(U)=E(U+V)-E(V)=180000-60000=120000
$$

4.27
a. Set $1-\frac{1}{k^{2}}=0.9$, then $k=\sqrt{10}=3.16$, then the interval

$$
[\mu-k \sigma, \mu-k \sigma]=[2.472,7.528]
$$

includes at least 90% of weekly figures for the number of breakdown.
b.

Let $k=3.75$, then

$$
\begin{aligned}
P(X>8) & \leq P(|X-5|>3) \\
& =P(|X-\mu|>k \sigma) \\
& \leq \frac{1}{k^{2}} \\
& =0.071
\end{aligned}
$$

Thus the director is safe in making this claim.
4.31

There are $26^{3} \cdot 10^{4}=175760000$ possible combinations of three letters and four numbers which form the sample space. Each outcome in the sample space has the same probability.
For the first lottery, there are $3!4!=144$ outcomes in the sample space that have the same letters and numbers.
For the second lottery, there are $3 \cdot 4!=72$ outcomes in the sample space that have the same letters and numbers.

For the third lottery, there are $3!2\binom{4}{2}=72$ outcomes in the sample space that have the
same letters and numbers.
For the fourth lottery, there are $3!\cdot 2\binom{4}{2}=72$ outcomes in the sample space that have the same letters and numbers.
Let W denote that whether you can win the lottery, that is, $W=1$ if you win, otherwise $W=0$. Then the probability of winning the grand prize is

$$
P(W=1)=P(\text { winning the grand prize })=\frac{144+72+72+72}{175760000}=\frac{9}{4394000}
$$

The expected profit is

$$
E(W)=1000000 \cdot P(W=1)=2.05
$$

Thus the coupon is worth mailing back.

4.33

Let X denote the number of demand of these items on a given day. Suppose the merchant stock n items. Since the demand would not exceed four items, n should not be larger than 4 . The minimum daily demand is two items, thus n should not be smaller than 2. Let Y denote the profit on a give day, then we have

$$
Y=1.2 \min \{X, n\}-n
$$

We need to discuss the following situations:
i) $n=4$, then

$$
Y=1.2 X-4
$$

The expected daily profit is

$$
\begin{aligned}
E(Y) & =E(1.2 X-4) \\
& =1.2 E(X)-4 \\
& =-0.04
\end{aligned}
$$

ii) $n=3$,

$$
\begin{aligned}
& \text { when } X=2, Y=1.2 \min \{2,3\}-3=-0.6 \\
& \text { when } X=3, Y=1.2 \min \{3,3\}-3=0.6 \\
& \text { when } X=4, Y=1.2 \min \{4,3\}-3=0.6
\end{aligned}
$$

Thus the expected daily profit is

$$
E(Y)=(-0.6) \times 0.2+0.6 \times 0.3+0.6 \times 0.5=0.36
$$

ii) $n=2$,

$$
Y=1.2 n-n=0.2 n=0.4
$$

Thus the expected daily profit is

$$
E(Y)=0.4
$$

Therefore, the merchant should stock two items to maximize the expected daily profit.

