a. each individual has the probability of 0.5 to pass the gene to an offspring.
$P($ the child has no disease gene $)=P($ the first person do not pass gene to the child $)$

$$
\begin{aligned}
& \times P(\text { the second person do not pass gene to the child }) \\
= & 0.5 \times 0.5 \\
= & 0.25
\end{aligned}
$$

b. for each child, having no disease gene is an independent event, then the probability of interest is

$$
0.25^{5}=0.000977
$$

4.54

Let X denote the number of components last longer than 1000 hours, then X can be modeled to have a binomial distribution with $p=1-0.15=0.85$
a. We have

$$
P(X=2)=\binom{4}{2}(0.85)^{2}(1-0.85)^{2}=0.0975
$$

b. If the subsystem operates for longer than 1000 hours, any two or more of the four components last for more than 1000 hours, so we get

$$
\begin{aligned}
P(X \geq 2) & =\binom{4}{2}(0.85)^{2}(1-0.85)^{2}+\binom{4}{3}(0.85)^{3}(1-0.85)^{1}+\binom{4}{4}(0.85)^{4}(1-0.85)^{0} \\
& =0.988
\end{aligned}
$$

4.58

a. X has a binomial distribution with $p=0.1$

$$
P(X \geq 1)=1-P(X=0)=1-\binom{n}{0}(0.1)^{0}(1-0.1)^{n}=1-0.9^{n}=0.95
$$

Thus $n=\frac{\log 0.05}{\log 0.9}=28$
b. X has a binomial distribution with $p=0.1$
$P(X \geq 1)=1-P(X=0)=1-\binom{n}{0}(0.05)^{0}(1-0.05)^{n}=1-0.95^{n}=0.95$
Thus $n=\frac{\log 0.05}{\log 0.95}=58$

4.60

For each case,
$P($ innocent people receiving death penalty $)=0.01 \times \sum_{x=2}^{3}\binom{3}{x}(0.05)^{x}(1-0.05)^{3-x}$

$$
=0.0000725
$$

Let X denote the number of innocent people receiving death penalty, X can be modeled as a binomial distribution with $n=100, p=0.0000725$, then
$E(X)=n p=100 \times 0.0000725=0.00725$
$V(X)=n p(1-p)=100 \times 0.0000725 \times 0.9999275=0.007249$
$\sigma=\sqrt{V(X)}=0.0851$
4.68

Define
event A: the first two engines are defective
event B: at least four defective engines are tested before the first nondefective engine is found.

We need to find $P(B \mid A)=\frac{P(B \cap A)}{P(A)}$
The first and second test are independent, then we have
$P(A)=0.1 \times 0.1=0.01$
Event $B \subseteq A$, then

$$
P(B \cap A)=P(B)=\sum_{k=4}^{\infty}(0.1)^{k} \cdot 0.9=0.0001
$$

Therefore,

$$
P(B \mid A)=\frac{0.0001}{0.01}=0.01
$$

4.78

Let Y be the number of people who refuse to be interviewed before she obtains five people, so
$Y=X-5, Y$ can reasonably be assumed to have the negative binomial distribution with $p=0.6, r=5$
a.

$$
\begin{aligned}
P(X \leq 7) & =P(Y \leq 2) \\
& =\sum_{i=0}^{2}\binom{i+4}{4}(0.6)^{5}(1-0.6)^{i} \\
& =0.419904
\end{aligned}
$$

b.

$$
E(Y)=\frac{r q}{p}=\frac{5 \times 0.4}{0.6}=\frac{10}{3}, V(Y)=\frac{r q}{p^{2}}=\frac{5 \times 0.4}{0.6^{2}}=\frac{50}{9}
$$

Because $Y=X-5$, so $X=Y+5$, then

$$
E(X)=E(Y)+5=\frac{25}{3}, \quad V(X)=V(Y)=\frac{50}{9}
$$

4.79

Let X be the number of customers that the salesman has to visit to make three sales, let Y denote the number of customers who refuse to purchase a car before the salesman makes three sales, so $Y=X-3$. Suppose that trials are independent, Y can be modeled as negative binomial distribution with $p=0.2, r=3$
a.

$$
\begin{aligned}
P(X \geq 5) & =P(Y \geq 2) \\
& =1-P(Y \leq 1) \\
& =1-\sum_{i=0}^{1}\binom{i+2}{2}(0.2)^{3}(1-0.2)^{i} \\
& =0.9728
\end{aligned}
$$

b.
$E(Y)=\frac{r q}{p}=\frac{3 \times 0.8}{0.2}=12$
Because $Y=X-3$, so $X=Y+3$, then

$$
E(X)=E(Y)+3=15
$$

4.83

a.

Let Y_{i} denote the event that John wins in the i th game, $P\left(Y_{i}=1\right)=p=0.6$. Because the outcome of each game is independent of the outcomes of the other games, then
$P(i=3)=P\left(Y_{1}=1\right) P\left(Y_{2}=1\right) P\left(Y_{3}=1\right)=0.6^{3}=0.216$
$P(i=4)=P\left(Y_{1}=0\right) P\left(Y_{2}=1\right) P\left(Y_{3}=1\right) P\left(Y_{4}=1\right)+P\left(Y_{1}=1\right) P\left(Y_{2}=0\right) P\left(Y_{3}=1\right) P\left(Y_{4}=1\right)$
$+P\left(Y_{1}=1\right) P\left(Y_{2}=1\right) P\left(Y_{3}=0\right) P\left(Y_{4}=1\right)$
$=\binom{3}{1} p^{3}(1-p)^{1}$
$=0.2592$
There are $\binom{4}{2}$ ways to choose two games which John lost in the first four games, then
$P(i=5)=\binom{4}{2} p^{3}(1-p)^{2}=0.20736$
b.
$P($ john wins in three-out-of-five series $)=P(i=3)+P(i=4)+P(i=5)$

$$
=0.68252
$$

$P($ john wins in two-out-of-three series $)=P($ john wins \mid three games $)+P($ john wins \mid two games $)$

$$
\begin{aligned}
& =\binom{2}{1}(0.6)^{2}(1-0.6)+(0.6)^{2} \\
& =0.648
\end{aligned}
$$

The probability that John wins in two-out-of-three series is smaller than the probability that he wins in three-out-of-five series .

4.84

let X denote the number of games he loses from the fourth game before he stops playing, Y denote the number of games the child plays, then $Y=X+4$. The outcomes of games are independent, thus X can be modeled as geometric distribution with parameter p.
a. $E(X)=\frac{q}{p}=\frac{1-p}{p}$, thus $E(Y)=E(X)+4=\frac{1-p}{p}+4$
b. Let Z denote the number of games that the child wins in the first three game, M
denote the number of games the child will win. Then $M=Z+1 . Z$ can be modeled as binomial distribution with parameter p. We then have
$E(Z)=n p=3 p, \quad E(M)=E(Z)+1=3 p+1$

4.93.

Let X denote the number of customer arrivals for a given hour. X has a Possion distribution with $\lambda=7$.
a. $p(7)=\frac{7^{7}}{7!} e^{-7}=0.149$
b. $P(X \leq 2)=\sum_{x=0}^{2} \frac{7^{x}}{x!} e^{-7}=0.030$
c. $P(X \geq 2)=1-P(X \leq 1)=1-0.007=0.993$

4.98

Let X denote the number of emitted particles for a given hour. X has a Possion distribution with $\lambda=4$.
a. $P(X \geq 6)=1-P(X \leq 5)=1-0.785=0.215$
b. $P(X \leq 3)=0.433$
c. Let Y denote the number of emitted particles in a given 24 -hour period. X has a Possion distribution with $\lambda=96$. Then

$$
P(Y=0)=\frac{96^{0}}{0!} e^{-96}=e^{-96}
$$

4.100

Let X denote the number of fatalities in a given year. X has a Possion distribution with $\lambda=4.4$. Let Y denote the number of fatalities during the five-year period. Y has a Possion distribution with $\lambda=4.4 \times 5=22$.
a. $P(X=0)=\frac{4.4^{0}}{0!} e^{-4.4}=0.012$
b. $P(X \geq 6)=1-P(X \leq 5)=1-0.720=0.280$
c. $P(Y=0)=\frac{22^{0}}{0!} e^{-22}=e^{-22}$
d. $P(Y \leq 12)=0.015$

4.104

X denotes the number of breakdowns during t hours of operation. Suppose the breakdowns are independent, then X can be modeled as a Possion distribution with $\lambda=\frac{2}{10} t=0.2 t$.We then have

$$
E(X)=\lambda=0.2 t, \quad V(X)=\lambda=0.2 t
$$

Thus

$$
E\left(X^{2}\right)=V(X)+[E(X)]^{2}=0.2 t+(0.2 t)^{2}=0.2 t+0.04 t^{2}
$$

The expected value between shutdowns is

$$
\begin{aligned}
E(R) & =E\left(300 t-75 X^{2}\right) \\
& =300 t-75 E\left(X^{2}\right) \\
& =300 t-15 t-3 t^{2} \\
& =-3\left(t-\frac{95}{2}\right)^{2}+3 \cdot\left(\frac{95}{2}\right)^{2} \\
& \leq 3 \cdot\left(\frac{95}{2}\right)^{2}
\end{aligned}
$$

When $t_{0}=\frac{95}{2}$, we obtain the maxim expected revenue between shutdowns.

4.115

Let X denote the number of selected firms which are not local. Because three firms are randomly chosen without replacement, X has a hypergeometric distribution with $N=6, k=2, n=3$
a.

$$
P(X=0)=\frac{\binom{2}{0}\binom{6-2}{3-0}}{\binom{6}{3}}=\frac{1}{5}
$$

b.

$$
P(X \geq 1)=1-P(X=0)=\frac{4}{5}
$$

4.120

Let X denote the number of selected PCs which do not function properly. Suppose that five PCs are randomly chosen, X has a hypergeometric distribution with
$N=10, k=4, n=5$. When all five are not defective, $X=0$

$$
P(X=0)=\frac{\binom{4}{0}\binom{10-4}{5-0}}{\binom{10}{5}}=\frac{1}{42}
$$

