Solutions to Homework 5

5.5

a. $\int_{-\infty}^{+\infty} f(x) d x=\int_{0}^{+\infty} c e^{-x / 10} d x=-\left.10 c e^{-x / 10}\right|_{0} ^{+\infty}=10 c=1$ thus $c=\frac{1}{10}$.
b. if $b \leq 0, \quad F(b)=0$, if $b>0$, then

$$
F(b)=\int_{-\infty}^{b} f(x) d x=\int_{0}^{b} \frac{1}{10} e^{-x / 10} d x=-\left.e^{-x / 10}\right|_{0} ^{b}=1-e^{-b / 10}
$$

thus

$$
F(b)= \begin{cases}1-e^{-b / 10}, & b>0 \\ 0, & b \leq 0\end{cases}
$$

c. $P(X \geq 15)=1-P(X<15)=1-P(X \leq 15)=1-\left(1-e^{-15 / 10}\right)=e^{-3 / 2}=0.2231$
d. $P(X \geq 20 \mid X \geq 5)=\frac{P(X \geq 20)}{P(X \geq 5)}=\frac{e^{-2}}{e^{-1 / 2}}=e^{-3 / 2}=0.2231$
5.6

$$
\begin{aligned}
P(X \geq 4) & =\int_{4}^{+\infty} f(x) d x \\
& =\int_{4}^{6} \frac{3}{32}(x-2)(6-x) d x \\
& =0.5
\end{aligned}
$$

5.8

b. $P(X \geq 5)=1-P(X<5)=1-P(X \leq 5)=1-F(5)=\frac{5}{12}$
c.the probability density function of X is

$$
f(x)=\frac{d}{d x} F(x)= \begin{cases}0, & x<0 \\ \text { or } x>10 \\ \frac{x}{20}, & 0 \leq x \leq 4 \\ \frac{10-x}{30}, & 4 \leq x \leq 10\end{cases}
$$

5.12

$P(X \geq 0.5)=\int_{0.5}^{1} 12 x^{2}(1-x) d x=\left.\left(4 x^{3}-3 x^{4}\right)\right|_{0.5} ^{1}=\frac{11}{16}$
Let Y denote the number of samples that have a proportion of impurities exceeding 0.5.
four samples are independently selected, thus Y can be modeled as binomial distribution with $n=4, p=\frac{11}{16}$
a. $P(Y=1)=\binom{4}{1} p(1-p)^{3}=0.0839$
b. $P(Y \geq 1)=1-P(Y=0)=1-\binom{4}{0} p^{0}(1-p)^{4}=1-0.0095=0.9905$

5.14

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{+\infty} x f(x) d x \\
& =\int_{71}^{73} x \cdot \frac{1}{2} d x \\
& =\left.\frac{1}{4} x^{2}\right|_{71} ^{73} \\
& =72
\end{aligned}
$$

to compute σ, we first find $E\left(X^{2}\right)$

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{+\infty} x^{2} f(x) d x \\
& =\int_{71}^{73} x^{2} \cdot \frac{1}{2} d x \\
& =\left.\frac{1}{6} x^{3}\right|_{71} ^{73} \\
& =\frac{15553}{3}
\end{aligned}
$$

then

$$
\begin{gathered}
V(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{15553}{3}-72^{2}=\frac{1}{3} \\
\sigma=\sqrt{V(X)}=\frac{\sqrt{3}}{3}
\end{gathered}
$$

5.17
a.

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{+\infty} x f(x) d x \\
& =\int_{0}^{4} x \cdot \frac{3}{64} x^{2}(4-x) d x \\
& =2.4
\end{aligned}
$$

to compute $V(X)$ and σ, we first find $E\left(X^{2}\right)$

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{+\infty} x^{2} f(x) d x \\
& =\int_{0}^{4} x^{2} \cdot \frac{3}{64} x^{2}(4-x) d x \\
& =6.4
\end{aligned}
$$

Then we have

$$
\begin{gathered}
V(X)=E\left(X^{2}\right)-[E(X)]^{2}=6.4-2.4^{2}=0.64 \\
\sigma=\sqrt{V(X)}=0.8
\end{gathered}
$$

b.we first specify

$$
1-\frac{1}{k^{2}}=0.75
$$

then

$$
k=2
$$

Thus, the interval $\mu-2 \sigma$ to $\mu+2 \sigma$ will contain at least 75% of the probability. this interval is given by

$$
[\mu-2 \sigma, \mu+2 \sigma]=[0.8,4]
$$

5.22

the probability density function of X is

$$
f(x)=\frac{d}{d x} F(x)=\left\{\begin{array}{c}
0, x<0 \text { or } x>10 \\
\frac{x}{20}, 0 \leq x \leq 4 \\
\frac{10-x}{30}, 4 \leq x \leq 10
\end{array}\right.
$$

The mean number of minutes that Jerry is early for appointments is

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{+\infty} x f(x) d x \\
& =\int_{0}^{4} x \cdot \frac{x}{20} d x+\int_{4}^{10} x \cdot \frac{10-x}{30} d x \\
& =\frac{14}{3}
\end{aligned}
$$

5.27

a. $P(X>c)=\int_{c}^{b} \frac{1}{b-a} d x=\frac{b-c}{b-a}$
b. $P(X>d \mid X>c)=\frac{P(X>d)}{P(X>c)}=\frac{\frac{b-d}{b-a}}{\frac{b-c}{b-a}}=\frac{b-d}{b-c}$

5.39

Let X denote the travel distances, it is uniformly distributed between points a and b.
a. $P\left(X \leq \frac{a+b}{2}\right)=\frac{\frac{a+b}{2}-a}{b-a}=0.5$
b. $P(X-a>3(b-X))=P\left(X>\frac{a+3 b}{4}\right)=1-F\left(\frac{a+3 b}{4}\right)=1-\frac{\frac{a+3 b}{4}-a}{b-a}=0.25$
c. For any one of the three automobiles, the probability that this automobile travel past the midpoint between a and b is

$$
P\left(X>\frac{a+b}{2}\right)=1-F\left(\frac{a+b}{2}\right)=0.5
$$

Let Y denote the number of automobiles that travel past the midpoint between a and $b . Y$ can be modeled as a binomial distribution with $n=3, p=0.5$, then

$$
P(Y=1)=\binom{3}{1} 0.5(1-0.5)^{2}=0.375
$$

5.59

Let X denote the service times at teller windows, it follows an exponential distribution with $\theta=3.4$
a. $P(X>2)=\int_{2}^{\infty} \frac{1}{3.4} e^{-\frac{\theta}{3.4}} d \theta=-\left.e^{-\frac{\theta}{3.4}}\right|_{2} ^{\infty}=e^{-\frac{2}{3.4}}=0.555$
b. $P(X>4 \mid X>2)=\frac{P(X>4)}{P(X>2)}=\frac{e^{-\frac{4}{3.4}}}{e^{-\frac{2}{3.4}}}=e^{-\frac{2}{3.4}}=0.555$

