Solutions to Homework 6

5.63

Solve equation

$$
0.5=F(m)=1-e^{-\frac{m}{\theta}}
$$

We get

$$
m=\theta \ln 2=0.693 \theta<\theta
$$

5.65

Let X denote the daily rainfall during a randomly selected September day.
a. $E(X)=\alpha \beta=8, \quad V(X)=\alpha \beta^{2}=160$
b. $1-\frac{1}{k^{2}}=0.75$, then we have $k=2$. From Tchebysheff's Theorem,

$$
P(|X-\mu| \leq 2 \sigma) \geq 1-\frac{1}{k^{2}}=0.75
$$

The interval $[\mu-2 \sigma, \mu+2 \sigma]=[8-8 \sqrt{10}, 8+8 \sqrt{10}]$ will include the daily rainfall for a randomly selected September day with a probability of at lease 0.75 . the rainfall is nonnegative, thus the interval $[0,8+8 \sqrt{10}]$ will include the daily rainfall for a randomly selected September day with a probability of at lease 0.75

5.74

Let X denote the annual maximum river flows.
a. $E(X)=\alpha \beta=240, \quad V(X)=\alpha \beta^{2}=36000$
b. $1-\frac{1}{k^{2}}=8 / 9$, then we have $k=3$. From Tchebysheff's Theorem,

$$
P(|X-\mu| \leq 3 \sigma) \geq 1-\frac{1}{k^{2}}=8 / 9
$$

The interval $[\mu-3 \sigma, \mu+3 \sigma]=[240-180 \sqrt{10}, 240+180 \sqrt{10}]$ will include the maximum annual flow with a probability of at lease 8/9.

5.87

Let X denote the diameter of steel shafts.
a.

$$
\begin{aligned}
P(0.98 \leq X \leq 1.02) & =P\left(\frac{0.98-1.005}{0.01} \leq \frac{X-\mu}{\sigma} \leq \frac{1.02-1.005}{0.01}\right) \\
& =P(-2.5 \leq \mathrm{Z} \leq 1.5) \\
& =0.4332+0.4938 \\
& =0.927
\end{aligned}
$$

Thus the percentage of output of this operation will fail to meet specifications is

$$
100(1-0.927) \%=7.3 \%
$$

b. $\mu=1.00$ minimizes the fraction that fail to meet specifications

5.85

Let X denote the amount spent for maintenance and repairs in a certain company in the next week, then X has an approximately normal distribution with mean of 600 and standard deviation of 40 . Hence, the probability that actual costs will exceed the budgeted amount is

$$
\begin{aligned}
P(X>700) & =P\left(\frac{X-600}{40}>\frac{700-600}{40}\right) \\
& =P(Z>2.5) \\
& =0.0062
\end{aligned}
$$

Z has a standard normal distribution.

5.93

Let X denote the resistance of the certain type of capacitor, X has a normal distribution with mean of 800 and standard deviation of 200 , then
a.The proportion of capacitors which will meet this specification is

$$
\begin{aligned}
P(900 \leq X \leq 1000) & =P\left(\frac{900-800}{200} \leq \frac{X-800}{200} \leq \frac{1000-800}{200}\right) \\
& =P(0.5 \leq Z \leq 1) \\
& =P(0 \leq Z \leq 1)-P(0 \leq Z \leq 0.5) \\
& =0.3413-0.1915 \\
& =0.1498
\end{aligned}
$$

b. Define events A: the first capacitor chosen satisfy the specifications

> B: the second capacitor chosen satisfy the specificaions

Because the two capacitors are randomly chosen, then

$$
P(A \cap B)=P(A) P(B)=0.1498^{2}=0.02244
$$

5.94

Let X denote the length of a spotted sea trout, X has a normal distribution with mean of 22 and standard deviation of 4 .
a. The probability that a fisher man catches a spotted sea trout within the legal limits is

$$
\begin{aligned}
P(14 \leq X \leq 24) & =P\left(\frac{14-22}{4} \leq \frac{X-22}{4} \leq \frac{24-22}{4}\right) \\
& =P(-2 \leq \mathrm{Z} \leq 0.5) \\
& =P(0 \leq Z \leq 2)+P(0 \leq Z \leq 0.5) \\
& =0.4772+0.1915 \\
& =0.6687
\end{aligned}
$$

b. We need to find x such that $P(X>x)=0.05$. Now

$$
\begin{aligned}
P(X>x) & =P\left(\frac{X-22}{4}>\frac{x-22}{4}\right) \\
& =P\left(Z>\frac{x-22}{4}\right)
\end{aligned}
$$

From Table 4, we know that if

$$
P\left(Z>z_{0}\right)=0.05
$$

then $z_{0}=1.645$. Thus,

$$
\frac{x-22}{4}=1.645
$$

and

$$
x=28.58
$$

c. Let Y denote the number of trout out side the legal limit caught by the fisherman before he catches his first legal spotted sea trout, then Y can be modeled as the geometric distribution with the parameter $p=P(14 \leq X \leq 24)=0.6687$, then

$$
P(Y=3)=(1-p)^{3} p=0.0243
$$

5.105

a.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{0}^{1} k x^{4}(1-x)^{2} d x \\
& =k \int_{0}^{1}\left(x^{4}-2 x^{5}+x^{6}\right) d x \\
& =\left.k\left(\frac{1}{5} x^{5}-\frac{1}{3} x^{6}+\frac{1}{7} x^{7}\right)\right|_{0} ^{1} \\
& =\frac{k}{105}
\end{aligned}
$$

To make $f(x)$ a probability density function,

$$
\int_{-\infty}^{\infty} f(x) d x=\frac{k}{105}=1
$$

Thus

$$
k=105
$$

b.
X has the Beta Distribution with $\alpha=5, \beta=3$, then we have

$$
\begin{aligned}
& E(X)=\frac{\alpha}{\alpha+\beta}=\frac{5}{5+3}=\frac{5}{8} \\
& V(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}=\frac{5}{192}
\end{aligned}
$$

5.107

Let X denote the proportion of the fetuses in a randomly selected litter responding, then X has a Beta Distribution with $\alpha=3, \beta=2$
a. the mean litter proportion of fetuses responding to this hazard is

$$
E(X)=\frac{\alpha}{\alpha+\beta}=\frac{3}{3+2}=0.6
$$

b. the probability is

$$
\begin{aligned}
P(X \leq 0.2) & =\int_{-\infty}^{0.2} f(x) d x \\
& =\int_{0}^{0.2} 12 x^{2}(1-x) d x \\
& =\left.12\left(\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right)\right|_{0} ^{0.2} \\
& =0.0272
\end{aligned}
$$

5.116

Let X denote the proportion of pure iron in certain ore samples. The probability density function of X is

$$
f(x)=\frac{\Gamma(4)}{\Gamma(3) \Gamma(1)} x^{2}=3 x^{2}, \text { for } 0<x<1
$$

a. The probability that one of these samples will have more than 50% pure iron is

$$
P(X>0.5)=\int_{0.5}^{1} 3 x^{2} d x=\left.x^{3}\right|_{0.5} ^{1}=0.875
$$

b. b. The probability that one of these samples will have less than 30% pure iron is

$$
P(X<0.3)=\int_{0}^{0.3} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{0.3}=0.027
$$

The probability that two out of three samples will have less than 30% pure iron is

$$
\binom{3}{2}(0.027)^{2}(1-0.027)=0.0021
$$

