Curvature, Macroscopic Dimensions, and Symmetric Products of Surfaces

Luca F. Di Cerbo

UF FLORIDA

Geometry & Topology Seminar, Mathematics Department, Stony Brook University, April 22, 2025

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Curvature, macroscopic dimensions, and symmetric products of surfaces

向下 イヨト イヨト

크

Curvature, macroscopic dimensions, and symmetric products of surfaces

arXiv2503.01779v3 [math.GT] 41 pp

・ 同 ト ・ ヨ ト ・ ヨ ト

Curvature, macroscopic dimensions, and symmetric products of surfaces

arXiv2503.01779v3 [math.GT] 41 pp

joint with my colleague A. Dranishnikov and his student E. Jauhari.

・ 同 ト ・ ヨ ト ・ ヨ ト

イロト イヨト イヨト イヨト

æ

 Recall the Gromov-Lawson, Gromov, Rational Inessentiality Conjectures arising in the study of closed Riemannian manifolds with positive scalar curvature;

向下 イヨト イヨト

- Recall the Gromov-Lawson, Gromov, Rational Inessentiality Conjectures arising in the study of closed Riemannian manifolds with positive scalar curvature;
- Prove that Symmetric Products of Surfaces sharply distinguish between two distinct notions of macroscopic dimension introduced for the study of Gromov Conjecture;

向下 イヨト イヨト

- Recall the Gromov-Lawson, Gromov, Rational Inessentiality Conjectures arising in the study of closed Riemannian manifolds with positive scalar curvature;
- Prove that Symmetric Products of Surfaces sharply distinguish between two distinct notions of macroscopic dimension introduced for the study of Gromov Conjecture;
- Present a **detailed** study of the curvature and symplectic asphericity properties of Symmetric Products of Surfaces;

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Recall the Gromov-Lawson, Gromov, Rational Inessentiality Conjectures arising in the study of closed Riemannian manifolds with positive scalar curvature;
- Prove that Symmetric Products of Surfaces sharply distinguish between two distinct notions of macroscopic dimension introduced for the study of Gromov Conjecture;
- Present a **detailed** study of the curvature and symplectic asphericity properties of Symmetric Products of Surfaces;
- Address the **Gromov-Lawson** and **Gromov Conjectures** in the Kähler projective setting and draw **new** connections between complex algebraic geometry and macroscopic dimensions.

イロト 不得 トイラト イラト 二日

Introduction: Metrics, Curvature, and Macroscopic Dimensions

The objects of this talk are Riemannian Manifolds and their Riemannian universal covers.

.

Introduction: Metrics, Curvature, and Macroscopic Dimensions

The objects of this talk are Riemannian Manifolds and their Riemannian universal covers.

Definition

Let M^n be a smooth orientable *n*-manifold (e.g., a smooth embedded surface in \mathbb{R}^3). A Riemannian metric *g* on *M* is choice of a positive definite inner product on each tangent space T_pM varying smoothly with $p \in M$.

・ 同 ト ・ 三 ト ・ 三 ト

Introduction: Metrics, Curvature, and Macroscopic Dimensions

The objects of this talk are Riemannian Manifolds and their Riemannian universal covers.

Definition

Let M^n be a smooth orientable *n*-manifold (e.g., a smooth embedded surface in \mathbb{R}^3). A Riemannian metric g on M is choice of a positive definite inner product on each tangent space T_pM varying smoothly with $p \in M$.

Given a smooth path in a Riemannian manifold (M, g)

$$\alpha: [\mathbf{a}, \mathbf{b}] \to M,$$

we define its length by setting

$$L(\alpha) = \int_a^b g(\alpha'(t), \alpha'(t))^{1/2} dt, \quad \alpha'(t) \in T_{\alpha(t)} M.$$

We then define the distance between $p_1, p_2 \in M$, denoted by $d(p_1, p_2)$, to be the infimum for L over all smooth paths joining p_1 and p_2 .

伺下 イヨト イヨト

크

Following the geodesics starting at a point $p \in M$, we obtain the so-called **exponential map**:

$$exp_p: T_pM^n \to M^n, \quad T_pM^n \simeq \mathbb{R}^n.$$

向下 イヨト イヨト

Following the geodesics starting at a point $p \in M$, we obtain the so-called **exponential map**:

$$exp_p: T_pM^n \to M^n, \quad T_pM^n \simeq \mathbb{R}^n.$$

The **exponential map** is a local diffeomorphism around $0 \in T_p M^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Following the geodesics starting at a point $p \in M$, we obtain the so-called **exponential map**:

$$exp_{p}: T_{p}M^{n} \to M^{n}, \quad T_{p}M^{n} \simeq \mathbb{R}^{n}.$$

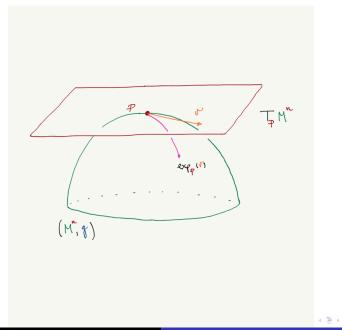
The **exponential map** is a local diffeomorphism around $0 \in T_p M^n$.

It defines local coordinates around $p \in M$ known as Geodesic Normal Coordinates.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Pictorially, we have:

Pictorially, we have:



æ

Volumes, Ricci Curvature, and Scalar Curvature

The **expansion** of the **Volume Element** in Geodesic Normal Coordinates and is given by:

$$d\mu_{g} = \left(1 - \frac{1}{6} \operatorname{Ric}_{ij} x^{i} x^{j} + O(|x|^{3})\right) dx^{1} \wedge ... \wedge dx^{n}$$

向下 イヨト イヨト

Volumes, Ricci Curvature, and Scalar Curvature

The **expansion** of the **Volume Element** in Geodesic Normal Coordinates and is given by:

$$d\mu_g = \left(1 - rac{1}{6} \operatorname{Ric}_{ij} x^i x^j + O(|x|^3)
ight) dx^1 \wedge ... \wedge dx^r$$

This defines a symmetric two tensor (a symmetric bilinear form on each tangent space $T_p M$)

know as the Ricci Tensor.

向下 イヨト イヨト

Volumes, Ricci Curvature, and Scalar Curvature

The **expansion** of the **Volume Element** in Geodesic Normal Coordinates and is given by:

$$d\mu_{g} = \left(1 - \frac{1}{6} \operatorname{Ric}_{ij} x^{i} x^{j} + O(|x|^{3})\right) dx^{1} \wedge ... \wedge dx^{r}$$

This defines a symmetric two tensor (a symmetric bilinear form on each tangent space $T_p M$)

know as the **Ricci Tensor**.

Similarly, the Scalar Curvature function

$$s_{g}: M \longrightarrow \mathbb{R}$$

can be defined for any $p \in M$ by the Taylor expansion

$$\frac{Vol_g(B_p(R))}{Vol_{\mathbb{R}^n}(B_0(R))} = 1 - \frac{s_g(p)}{6(n+2)}R^2 + o(R^2)$$

向下 イヨト イヨト

What about macroscopically? Well, in this case this question makes more sense on the Riemannian universal cover $(\widetilde{M}^n, \widetilde{g})$.

向下 イヨト イヨト

What about macroscopically? Well, in this case this question makes more sense on the Riemannian universal cover $(\widetilde{M}^n, \widetilde{g})$.

Conjecturally, if (M^n, g) has $s_g > 0$ then the universal cover \widetilde{M} is small.

伺下 イヨト イヨト

What about macroscopically? Well, in this case this question makes more sense on the Riemannian universal cover $(\widetilde{M}^n, \widetilde{g})$.

Conjecturally, if (M^n, g) has $s_g > 0$ then the universal cover \widetilde{M} is small.

Here **small** means that \widetilde{M} looks lower dimensional on large scales, e.g., \widetilde{M} is **compact** or it splits as a product where one of the factors is **compact**.

What about macroscopically? Well, in this case this question makes more sense on the Riemannian universal cover $(\widetilde{M}^n, \widetilde{g})$.

Conjecturally, if (M^n, g) has $s_g > 0$ then the universal cover \widetilde{M} is small.

Here **small** means that \widetilde{M} looks lower dimensional on large scales, e.g., \widetilde{M} is **compact** or it splits as a product where one of the factors is **compact**.

Ok, what does this mean?!? At this stage, it seems we are simply (and optimistically!) generalizing the picture from the Cheeger-Gromoll splitting theorem under the **much** stronger non-negative Ricci curvature assumption.

- 4 回 ト 4 日 ト - 日 日

Macroscopic Dimension(s)

<回と < 回と < 回と

æ

Definition (Gromov, 1996)

For a closed Riemannian manifold M, its macroscopic dimension, denoted dim_{mc} M, is the smallest integer m such that there exists a uniformly cobounded, proper, continuous map

 $f: M \to K^m$

to an *m*-dimensional simplicial complex K^m .

Definition (Gromov, 1996)

For a closed Riemannian manifold M, its macroscopic dimension, denoted dim_{mc} M, is the smallest integer m such that there exists a uniformly cobounded, proper, continuous map

 $f: M \to K^m$

to an *m*-dimensional simplicial complex K^m .

• For example, if M is **compact** then dim_{mc} M = 0.

Definition (Gromov, 1996)

For a closed Riemannian manifold M, its macroscopic dimension, denoted dim_{mc} M, is the smallest integer m such that there exists a uniformly cobounded, proper, continuous map

 $f: M \to K^m$

to an *m*-dimensional simplicial complex K^m .

- For example, if M is **compact** then dim_{mc} M = 0.
- Similarly, if M is a Riemannian product with a compact factor, say S^k , we have:

$$M^n = N^{n-k} \times S^k \quad \Rightarrow \quad \dim_{mc} M \leq n-k.$$

(4月) トイヨト イヨト

Definition (Dranishnikov, 2011)

For a closed Riemannian manifold M, its **modified macroscopic dimension**, denoted dim_{MC} M, is the smallest integer m such that there exists a uniformly cobounded, proper, Lipschitz map

 $f: M \to K^m$

to an *m*-dimensional simplicial complex K^m .

伺 ト イ ヨ ト イ ヨ ト

Definition (Dranishnikov, 2011)

For a closed Riemannian manifold M, its **modified macroscopic dimension**, denoted dim_{MC} M, is the smallest integer m such that there exists a uniformly cobounded, proper, Lipschitz map

 $f: M \to K^m$

to an *m*-dimensional simplicial complex K^m .

We clearly have:

$$\dim_{mc} M \leq \dim_{MC} M \leq \dim M$$

向 ト イヨ ト イヨト

Definition (Dranishnikov, 2011)

For a closed Riemannian manifold M, its **modified macroscopic dimension**, denoted dim_{MC} M, is the smallest integer m such that there exists a uniformly cobounded, proper, Lipschitz map

 $f: M \to K^m$

to an *m*-dimensional simplicial complex K^m .

We clearly have:

$$\dim_{mc} M \leq \dim_{MC} M \leq \dim M$$

Question

Let M be a closed Riemannian manifol and let M be its Riemannian universal cover. Under which condition on M do we have the equality

 $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M}?$

Where did all of these coarse ideas begin?

向下 イヨト イヨ

Where did all of these coarse ideas begin?

Of course here at **Stony Brook** (and it was much smoother at first!), where these two gentlemen met in the late 70's:

Of course here at **Stony Brook** (and it was much smoother at first!), where these two gentlemen met in the late 70's:

Of course here at **Stony Brook** (and it was much smoother at first!), where these two gentlemen met in the late 70's:

M. Gromov* (1943 –) and B. Lawson** (1942 –) both back then.

Of course here at **Stony Brook** (and it was much smoother at first!), where these two gentlemen met in the late 70's:

M. Gromov* (1943 –) and B. Lawson** (1942 –) both back then.

*Author: Dirk Ferus. Source: Archives of the Mathematisches Forschungsinstitut Oberwolfach.

** Author: George M. Bergman. Source: Archives of the Mathematisches Forschungsinstitut Oberwolfach.

More precisely, on page 174 of

More precisely, on page 174 of

M. Gromov, **B. Lawson** *Positive scalar curvature and the Dirac operator on complete riemannian manifolds*, **Publications mathématiques de I'I.H.É.S.**, (1983), tome 58, 83-196.

向下 イヨト イヨト

More precisely, on page 174 of

M. Gromov, **B. Lawson** *Positive scalar curvature and the Dirac operator on complete riemannian manifolds*, **Publications mathématiques de I'I.H.É.S.**, (1983), tome 58, 83-196.

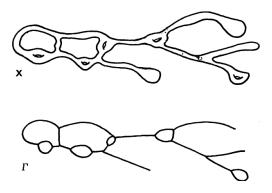
one finds the following tantalizing result:

向下 イヨト イヨト

COROLLARY 10.11. — Let X be a closed 3-manifold of scalar curvature \geq 1. Then there exists a distance decreasing map $f: X \to \Gamma$ onto a metric graph (a linear graph in \mathbb{R}^N , say), so that, for each $p \in \Gamma$,

diameter $(f^{-1}(p)) \leq 12\pi$.

Note. — This means that 3-manifolds with $\kappa \ge 1$ and diameter $\gg 1$ are "long and thin". Of course, arbitrarily long and complicated manifolds of this type can be constructed by taking connected sums (as in [GL₂]) of copies of S¹ × S² and S³.



$$(M^3, g), \quad s_g > 0, \quad |\pi_1| = \infty$$

$$(M^3, g), \quad s_g > 0, \quad |\pi_1| = \infty \quad \Rightarrow \quad \dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1.$$

$$(M^3, g), \quad s_g > 0, \quad |\pi_1| = \infty \quad \Rightarrow \quad \dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1.$$

Theorem (DC-Dranishnikov-Jauhari, 2025)

If M is a closed 2- or 3- manifold, then $\dim_{mc} M = \dim_{MC} M$.

$$(M^3, g), \quad s_g > 0, \quad |\pi_1| = \infty \quad \Rightarrow \quad \dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1.$$

Theorem (DC-Dranishnikov-Jauhari, 2025)

If M is a closed 2- or 3- manifold, then $\dim_{mc} M = \dim_{MC} M$.

• Many more results arise from the proof of this theorem...

(人間) (人) (人) (人) (人)

• For example, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 3$ if and only if M^3 is either aspherical or it has an aspherical component in its prime decomposition.

向下 イヨト イヨト

- For example, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 3$ if and only if M^3 is either aspherical or it has an aspherical component in its prime decomposition.
- Similarly, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1$ if and only if M^3 is a connected sum of $S^2 \times S^1$'s and spherical space forms and it has $|\pi_1| = \infty$.

(a) A (B) (a) A (B) (a)

- For example, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 3$ if and only if M^3 is either aspherical or it has an aspherical component in its prime decomposition.
- Similarly, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1$ if and only if M^3 is a connected sum of $S^2 \times S^1$'s and spherical space forms and it has $|\pi_1| = \infty$.
- Finally, one observes that

$$(M^3,g), \quad s_g > 0$$

- For example, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 3$ if and only if M^3 is either aspherical or it has an aspherical component in its prime decomposition.
- Similarly, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1$ if and only if M^3 is a connected sum of $S^2 \times S^1$'s and spherical space forms and it has $|\pi_1| = \infty$.
- Finally, one observes that

$$(M^3, g), \quad s_g > 0 \quad \Leftrightarrow \quad \dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} \leq 1$$

- For example, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 3$ if and only if M^3 is either aspherical or it has an aspherical component in its prime decomposition.
- Similarly, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1$ if and only if M^3 is a connected sum of $S^2 \times S^1$'s and spherical space forms and it has $|\pi_1| = \infty$.
- Finally, one observes that

$$(M^3, g), \quad s_g > 0 \quad \Leftrightarrow \quad \dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} \leq 1$$

and moreover this is the case if and only if M^3 is rationally inessential^{*}.

伺 ト イヨト イヨト

- For example, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 3$ if and only if M^3 is either aspherical or it has an aspherical component in its prime decomposition.
- Similarly, one has that $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = 1$ if and only if M^3 is a connected sum of $S^2 \times S^1$'s and spherical space forms and it has $|\pi_1| = \infty$.
- Finally, one observes that

$$(M^3, g), \quad s_g > 0 \quad \Leftrightarrow \quad \dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} \leq 1$$

and moreover this is the case if and only if M^3 is rationally inessential^{*}.

***Definition**: A closed orientable *n*-manifold *M* is **rationally essential** if $u_*[M] \neq 0 \in H_n(B\pi_1(M); \mathbb{Q})$ where $u : M \to B\pi_1$ classifies the fundamental group.

同 とう モン うけい

臣

Conjecture (Gromov & Lawson, 80's)

A closed **aspherical** *n*-manifold cannot support a Riemannian metric of positive scalar curvature.

Conjecture (Gromov & Lawson, 80's)

A closed **aspherical** *n*-manifold cannot support a Riemannian metric of positive scalar curvature.

A closely related conjecture in terms of macroscopic dimension is:

Conjecture (Gromov & Lawson, 80's)

A closed **aspherical** *n*-manifold cannot support a Riemannian metric of positive scalar curvature.

A closely related conjecture in terms of macroscopic dimension is:

Conjecture (Gromov, 1983 & 1996)

A closed manifold (M^n, g) with $s_g > 0$ satisfies dim_{mc} $\widetilde{M} \le n - 2$

Conjecture (Gromov & Lawson, 80's)

A closed **aspherical** *n*-manifold cannot support a Riemannian metric of positive scalar curvature.

A closely related conjecture in terms of macroscopic dimension is:

Conjecture (Gromov, 1983 & 1996)

A closed manifold (M^n, g) with $s_g > 0$ satisfies dim_{mc} $\widetilde{M} \le n - 2$

• Both Conjectures are **TRUE** for *n* = 2, 3!

Conjecture (Gromov & Lawson, 80's)

A closed **aspherical** *n*-manifold cannot support a Riemannian metric of positive scalar curvature.

A closely related conjecture in terms of macroscopic dimension is:

Conjecture (Gromov, 1983 & 1996)

A closed manifold (M^n, g) with $s_g > 0$ satisfies dim_{mc} $\widetilde{M} \le n - 2$

- Both Conjectures are **TRUE** for n = 2, 3!

Conjecture (Gromov & Lawson, 80's)

A closed **aspherical** *n*-manifold cannot support a Riemannian metric of positive scalar curvature.

A closely related conjecture in terms of macroscopic dimension is:

Conjecture (Gromov, 1983 & 1996)

A closed manifold (M^n, g) with $s_g > 0$ satisfies dim_{mc} $\widetilde{M} \le n - 2$

- Both Conjectures are **TRUE** for n = 2, 3!
- Note that this **implication** still holds under the so-called Weak Gromov Conjecture dim_{mc} $\widetilde{M} \leq n 1$.

イロン 不同 とうほう 不同 とう

Positive Results

イロン イボン イモン イモン 三日

Positive Results

Theorem (DC-Dranishnikov-Jauhari, 2025)

• If M^n admits a metric of non-negative Ricci curvature, we have $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} \le n$ with equality if and only if M^n is a flat *n*-manifold.

Positive Results

Theorem (DC-Dranishnikov-Jauhari, 2025)

- If M^n admits a metric of non-negative Ricci curvature, we have $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} \le n$ with equality if and only if M^n is a flat *n*-manifold.
- Assume there exists a degree one map $f: M \to N$ to a closed, orientable, closed *n*-manifold with $\dim_{mc} \widetilde{N} = n$ such that $f_*: \pi_1(M) \to \pi_1(N)$ is an isomorphism. We then have $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = n$.

Positive Results

Theorem (DC-Dranishnikov-Jauhari, 2025)

- If M^n admits a metric of non-negative Ricci curvature, we have $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} \le n$ with equality if and only if M^n is a flat *n*-manifold.
- Assume there exists a degree one map $f: M \to N$ to a closed, orientable, closed *n*-manifold with $\dim_{mc} \widetilde{N} = n$ such that $f_*: \pi_1(M) \to \pi_1(N)$ is an isomorphism. We then have $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = n$.
- For a given *n*-manifold *M* with dim_{mc} $M = n \ge 3$, we have $\overbrace{\dim_{mc} M \# N} = \dim_{MC} \widetilde{M} \# N = n}$ for any closed *n*-manifold *N*.

Positive Results

Theorem (DC-Dranishnikov-Jauhari, 2025)

- If M^n admits a metric of non-negative Ricci curvature, we have $\boxed{\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} \leq n}$ with equality if and only if M^n is a flat *n*-manifold.
- Assume there exists a degree one map $f: M \to N$ to a closed, orientable, closed *n*-manifold with $\dim_{mc} \widetilde{N} = n$ such that $f_*: \pi_1(M) \to \pi_1(N)$ is an isomorphism. We then have $\dim_{mc} \widetilde{M} = \dim_{MC} \widetilde{M} = n$.
- For a given n-manifold M with dim_{mc} M = n ≥ 3, we have dim_{mc} M#N = dim_{MC} M#N = n for any closed n-manifold N.
 dim_{mc} M̃ = dim_{MC} M̃ for a closed manifold Mⁿ with n = 2,3.

イロト イヨト イヨト イヨト

æ,

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be a closed orientable surface of genus g, and let $\mathbf{SP}^n(M_g)$ be the symmetric *n*-th power of M_g .

・ 同 ト ・ 三 ト ・ 三 ト

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be a closed orientable surface of genus g, and let $\mathbf{SP}^n(M_g)$ be the symmetric *n*-th power of M_g .

• If $n \ge g$, we have dim_{mc} $\widetilde{SP^n(M_g)} = \dim_{MC} \widetilde{SP^n(M_g)} = 2g$.

Negative Results: dim_{*mc*} \neq dim_{*MC*}

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be a closed orientable surface of genus g, and let $\mathbf{SP}^n(M_g)$ be the symmetric *n*-th power of M_g .

- If $n \ge g$, we have $\dim_{mc} \widetilde{SP^n(M_g)} = \dim_{MC} \widetilde{SP^n(M_g)} = 2g$.
- If n < g, we have

$$\dim_{MC} \widetilde{\mathbf{SP}^n(M_g)} = 2n$$

$$\dim_{mc} \widetilde{\mathbf{SP}^n(M_g)} \leq 2n - 1$$

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be a closed orientable surface of genus g, and let $\mathbf{SP}^n(M_g)$ be the symmetric *n*-th power of M_g .

- If $n \ge g$, we have $\dim_{mc} \widetilde{SP^n(M_g)} = \dim_{MC} \widetilde{SP^n(M_g)} = 2g$.
- If n < g, we have

$$\dim_{MC} \widetilde{\mathsf{SP}^n(M_g)} = 2n, \quad \dim_{mc} \widetilde{\mathsf{SP}^n(M_g)} \le 2n-1.$$

• If n < g and g - n is even, we have

$$\dim_{MC}\widetilde{\mathbf{SP}^n(M_g)}=2n$$

$$\dim_{mc} \widetilde{\mathbf{SP}^n(M_g)} \leq 2n-2$$

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be a closed orientable surface of genus g, and let $\mathbf{SP}^n(M_g)$ be the symmetric *n*-th power of M_g .

- If $n \ge g$, we have $\dim_{mc} \widetilde{SP^n(M_g)} = \dim_{MC} \widetilde{SP^n(M_g)} = 2g$.
- If n < g, we have

$$\dim_{MC} \widetilde{\mathsf{SP}^n(M_g)} = 2n, \quad \dim_{mc} \widetilde{\mathsf{SP}^n(M_g)} \le 2n-1.$$

• If n < g and g - n is even, we have

$$\dim_{MC} \widetilde{\operatorname{SP}^n(M_g)} = 2n, \quad \dim_{mc} \widetilde{\operatorname{SP}^n(M_g)} \leq 2n-2.$$

Recall that dim_{$$\mathbb{R}$$} **SP**^{*n*}(M_g) = $2n!*$

• • = • • = •

• Let M_g be a closed orientable surface of genus g. $\mathbf{SP}^n(M_g)$ is defined as the orbit space of the action of the symmetric group S_n on the *n*-product $M_g \times ... \times M_g$.

- 同 ト - ヨ ト - ヨ ト

- Let M_g be a closed orientable surface of genus g. $\mathbf{SP}^n(M_g)$ is defined as the orbit space of the action of the symmetric group S_n on the *n*-product $M_g \times \ldots \times M_g$.
- The Fundamental Theorem of Algebra establishes an isomorphism between ordered and unordered *n*-tuples in C so that SPⁿ(C) = Cⁿ!

A (10) × (10) × (10) ×

- Let M_g be a closed orientable surface of genus g. $\mathbf{SP}^n(M_g)$ is defined as the orbit space of the action of the symmetric group S_n on the *n*-product $M_g \times \ldots \times M_g$.
- The Fundamental Theorem of Algebra establishes an isomorphism between ordered and unordered *n*-tuples in C so that SPⁿ(C) = Cⁿ!
- Thus, $\mathbf{SP}^n(M_g)$ is naturally a complex manifold if we equip M_g with a complex structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let M_g be a closed orientable surface of genus g. $\mathbf{SP}^n(M_g)$ is defined as the orbit space of the action of the symmetric group S_n on the *n*-product $M_g \times \ldots \times M_g$.
- The Fundamental Theorem of Algebra establishes an isomorphism between ordered and unordered *n*-tuples in C so that SPⁿ(C) = Cⁿ!
- Thus, $\mathbf{SP}^{n}(M_{g})$ is naturally a complex manifold if we equip M_{g} with a complex structure.
- More precisely, given a complex curve M_g, SPⁿ(M_g) is a smooth projective variety parametrizing the set of effective divisors of degree n on M_g, i.e., formal sums Σⁿ_{λ=1} p_λ, p_λ ∈ M_g.

イロト イポト イヨト イヨト 二日

- Let M_g be a closed orientable surface of genus g. $\mathbf{SP}^n(M_g)$ is defined as the orbit space of the action of the symmetric group S_n on the *n*-product $M_g \times \ldots \times M_g$.
- The Fundamental Theorem of Algebra establishes an isomorphism between ordered and unordered *n*-tuples in C so that SPⁿ(C) = Cⁿ!
- Thus, $\mathbf{SP}^{n}(M_{g})$ is naturally a complex manifold if we equip M_{g} with a complex structure.
- More precisely, given a complex curve M_g, SPⁿ(M_g) is a smooth projective variety parametrizing the set of effective divisors of degree n on M_g, i.e., formal sums Σⁿ_{λ=1} p_λ, p_λ ∈ M_g.
- We have the Abel-Jacobi map $\mu_n : \mathbf{SP}^n(M_g) \to Jac(M_g)$ defined as

$$\mu_n(Q) := \left(\sum_{\lambda} \int_{p_0}^{p_{\lambda}} \omega_1, \dots, \sum_{\lambda} \int_{p_0}^{p_{\lambda}} \omega_g\right), Q = \sum_{\lambda=1}^n p_{\lambda}, p_0 \in M_g$$

 $\omega_1, ..., \omega_g$ is a **basis** for $H^0(M_g, K_{M_g})$.

イロト イヨト イヨト イヨト

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

臣

• **Dranishnikov** in 2013 produced the first examples of closed *m*-manifolds M with π_1 amenable $\dim_{mc} \widetilde{M} < \dim_{MC} \widetilde{M} = m$ for $m \ge 5$.

• • = • • = •

- **Dranishnikov** in 2013 produced the first examples of closed *m*-manifolds M with π_1 amenable $\dim_{mc} \widetilde{M} < \dim_{MC} \widetilde{M} = m$ for $m \ge 5$.
- SP²(M_g) are now examples of closed 4-manifolds with such property for any g ≥ 3!

伺 ト イ ヨ ト イ ヨ ト

- Dranishnikov in 2013 produced the first examples of closed *m*-manifolds M with π_1 amenable $\dim_{mc} \widetilde{M} < \dim_{MC} \widetilde{M} = m$ for $m \ge 5$.
- SP²(M_g) are now examples of closed 4-manifolds with such property for any g ≥ 3!
- The class of examples we produce (together with products with the circle) is dimensionally **sharp**. Recall that we proved $\dim_{mc} = \dim_{MC}$ for universal covers of closed 2- and 3-manifolds.

伺下 イヨト イヨト

- Dranishnikov in 2013 produced the first examples of closed *m*-manifolds M with π_1 amenable $\dim_{mc} \widetilde{M} < \dim_{MC} \widetilde{M} = m$ for $m \ge 5$.
- SP²(M_g) are now examples of closed 4-manifolds with such property for any g ≥ 3!
- The class of examples we produce (together with products with the circle) is dimensionally **sharp**. Recall that we proved $\dim_{mc} = \dim_{MC}$ for universal covers of closed 2- and 3-manifolds.
- We show that SPⁿ(M_g) are rationally essential for g > n therefore providing new counterxamples to Gromov's Rational Inessentiality Conjecture^{*} in all dimensions m ≥ 4.

*Statement: If M is closed orientable *n*-manifold with dim_{*mc*} $\widetilde{M} < n$, then M is not rationally essential

・ロア ・四マ ・日マー

- Dranishnikov in 2013 produced the first examples of closed *m*-manifolds M with π_1 amenable $\dim_{mc} \widetilde{M} < \dim_{MC} \widetilde{M} = m$ for $m \ge 5$.
- SP²(M_g) are now examples of closed 4-manifolds with such property for any g ≥ 3!
- The class of examples we produce (together with products with the circle) is dimensionally **sharp**. Recall that we proved $\dim_{mc} = \dim_{MC}$ for universal covers of closed 2- and 3-manifolds.
- We show that SPⁿ(M_g) are rationally essential for g > n therefore providing new counterxamples to Gromov's Rational Inessentiality Conjecture^{*} in all dimensions m ≥ 4.
- We observe that Gromov's **Rational Inessentiality Conjecture** holds true in dimension *m* = 3.

*Statement: If M is closed orientable *n*-manifold with dim_{*mc*} $\widetilde{M} < n$, then M is not rationally essential

・ロト ・四ト ・ヨト ・ヨト

<ロ> <四> <四> <三</td>

• It is interesting to note that these examples are geometrically sharp!

I ← E → I ← E →

臣

回 とう モン・ モン

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be generic in the moduli space \mathcal{M}_g . For $g \ge 2n - 1$, we have the following:

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be generic in the moduli space \mathcal{M}_g . For $g \ge 2n - 1$, we have the following:

• **SP**^{*n*}(*M_g*) supports Kähler metrics of non-positive holomorphic sectional curvature;

< 回 > < 三 > < 三 >

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be generic in the moduli space \mathcal{M}_g . For $g \geq 2n - 1$, we have the following:

- **SP**^{*n*}(*M_g*) supports Kähler metrics of non-positive holomorphic sectional curvature;
- SPⁿ(M_g) is symplectically aspherical*;

***Definition**: (M^{2n}, ω) is said to be **symplectically aspherical** if for any smooth map

$$f:S^2 o M$$
, we have $\left|\int_{S^2}f^*\omega=0
ight|.$

イロト イヨト イヨト イヨト 三日

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be generic in the moduli space \mathcal{M}_g . For $g \ge 2n - 1$, we have the following:

- **SP**^{*n*}(*M_g*) supports Kähler metrics of non-positive holomorphic sectional curvature;
- SPⁿ(M_g) is symplectically aspherical*;
- $SP^{n}(M_{g})$ is Stein;

***Definition**: (M^{2n}, ω) is said to be **symplectically aspherical** if for any smooth map

$$f:S^2
ightarrow M$$
, we have $\left|\int_{S^2}f^*\omega=0
ight|.$

イロン イボン イモン イモン 三日

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let M_g be generic in the moduli space \mathcal{M}_g . For $g \ge 2n - 1$, we have the following:

- **SP**^{*n*}(*M_g*) supports Kähler metrics of non-positive holomorphic sectional curvature;
- SPⁿ(M_g) is symplectically aspherical*;
- $SP^{n}(M_{g})$ is Stein;
- More non-positively curved type behavior....

***Definition**: (M^{2n}, ω) is said to be **symplectically aspherical** if for any smooth map

$$f:S^2 o M$$
, we have $\left|\int_{S^2}f^*\omega=0
ight|.$

<ロ> (四) (四) (三) (三) (三)

<ロ> <同> <同> < 同> < 同>

æ,

π₂(SPⁿ(M_g)) is always infinite (but not always finitely generated!), so that SPⁿ(M_g) is never aspherical.

- $\pi_2(\mathbf{SP}^n(M_g))$ is always infinite (but **not** always finitely generated!), so that $\mathbf{SP}^n(M_g)$ is never aspherical.
- dim_{mc} = dim_{MC} for aspherical manifolds but not for symplectically aspherical ones.

- $\pi_2(\mathbf{SP}^n(M_g))$ is always infinite (but **not** always finitely generated!), so that $\mathbf{SP}^n(M_g)$ is never aspherical.
- $\dim_{mc} = \dim_{MC}$ for aspherical manifolds but not for symplectically aspherical ones.
- Similarly, $\dim_{mc} = \dim_{MC}$ for manifolds with **non-positive** sectional curvature but **not** for Kähler manifolds with **non-positive** holomorphic sectional curvature.

伺下 イヨト イヨト

- $\pi_2(\mathbf{SP}^n(M_g))$ is always infinite (but **not** always finitely generated!), so that $\mathbf{SP}^n(M_g)$ is never aspherical.
- $\dim_{mc} = \dim_{MC}$ for aspherical manifolds but not for symplectically aspherical ones.
- Similarly, $\dim_{mc} = \dim_{MC}$ for manifolds with **non-positive** sectional curvature but **not** for Kähler manifolds with **non-positive** holomorphic sectional curvature.
- More statements along these lines.

伺 ト イヨト イヨト

- $\pi_2(\mathbf{SP}^n(M_g))$ is always infinite (but **not** always finitely generated!), so that $\mathbf{SP}^n(M_g)$ is never aspherical.
- $\dim_{mc} = \dim_{MC}$ for aspherical manifolds but not for symplectically aspherical ones.
- Similarly, $\dim_{mc} = \dim_{MC}$ for manifolds with **non-positive** sectional curvature but **not** for Kähler manifolds with **non-positive** holomorphic sectional curvature.
- More statements along these lines.
- Symmetric products of surfaces distinguish the two distinct notions of macroscopic dimension in a **dimensionally** and **geometrically** sharp way.

<ロ> (四) (四) (三) (三) (三)

3 1 4 3

Kähler Gromov-Lawson & Gromov type conjectures:

Kähler Gromov-Lawson & Gromov type conjectures:

Conjecture

A smooth projective **aspherical** *n*-variety cannot support a **Kähler** metric of positive scalar curvature.

Kähler Gromov-Lawson & Gromov type conjectures:

Conjecture

A smooth projective **aspherical** *n*-variety cannot support a **Kähler** metric of positive scalar curvature.

Similarly, we can formulate

Kähler Gromov-Lawson & Gromov type conjectures:

Conjecture

A smooth projective **aspherical** *n*-variety cannot support a **Kähler** metric of positive scalar curvature.

Similarly, we can formulate

Conjecture

A smooth projective variety X^n equipped with a Kähler metric ω with $s_{g_{\omega}} > 0$ satisfies dim_{mc} $\widetilde{X} \le 2n - 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 Note that these conjectures CRUCIALLY add the Kähler condition on the metric. In particular, they do NOT imply the Gromov-Lawson & Gromov conjectures for Kähler manifolds.

- Note that these conjectures CRUCIALLY add the Kähler condition on the metric. In particular, they do NOT imply the Gromov-Lawson & Gromov conjectures for Kähler manifolds.
- The **projective** assumption is made in order to use results from the mimimal model theory in algebraic geometry.

- Note that these conjectures CRUCIALLY add the Kähler condition on the metric. In particular, they do NOT imply the Gromov-Lawson & Gromov conjectures for Kähler manifolds.
- The **projective** assumption is made in order to use results from the mimimal model theory in algebraic geometry.
- Both Conjectures are **TRUE** when n = 2.

- Note that these conjectures CRUCIALLY add the Kähler condition on the metric. In particular, they do NOT imply the Gromov-Lawson & Gromov conjectures for Kähler manifolds.
- The **projective** assumption is made in order to use results from the mimimal model theory in algebraic geometry.
- Both Conjectures are **TRUE** when *n* = 2. This follows from one of S.T. Yau's first papers:

On the curvature of compact Hermitian manifolds, **Invent. Math.** 25 (1974), 213-239.

伺下 イヨト イヨト

- Note that these conjectures CRUCIALLY add the Kähler condition on the metric. In particular, they do NOT imply the Gromov-Lawson & Gromov conjectures for Kähler manifolds.
- The **projective** assumption is made in order to use results from the mimimal model theory in algebraic geometry.
- Both Conjectures are **TRUE** when *n* = 2. This follows from one of S.T. Yau's first papers:

On the curvature of compact Hermitian manifolds, **Invent. Math.** 25 (1974), 213-239.

• The original Gromov-Lawson & Gromov conjectures are **TRUE** for Kähler surfaces.

伺下 イヨト イヨト

- Note that these conjectures CRUCIALLY add the Kähler condition on the metric. In particular, they do NOT imply the Gromov-Lawson & Gromov conjectures for Kähler manifolds.
- The **projective** assumption is made in order to use results from the mimimal model theory in algebraic geometry.
- Both Conjectures are **TRUE** when *n* = 2. This follows from one of S.T. Yau's first papers:

On the curvature of compact Hermitian manifolds, **Invent. Math.** 25 (1974), 213-239.

• The original Gromov-Lawson & Gromov conjectures are **TRUE** for Kähler surfaces. This follows from C. LeBrun's work on the scalar curvature of such spaces using **Seiberg-Witten** theory:

On the curvature of complex surfaces, **Geom. Funct. Analysis** 5 (1995), 619-628.

<ロ> <四> <ヨ> <ヨ>

well

<ロ> <四> <ヨ> <ヨ>

well

The Kähler versions of the Gromov-Lawson & Gromov Conjectures we highlighted before can be proved

向下 イヨト イヨト

臣

well

The Kähler versions of the Gromov-Lawson & Gromov Conjectures we highlighted before can be proved

Let's dive into this!

向下 イヨト イヨト

A smooth projective *n*-variety X with a birational morphism onto an aspherical smooth projective *n*-variety Y cannot support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n$.

向下 イヨト イヨト

A smooth projective *n*-variety X with a birational morphism onto an aspherical smooth projective *n*-variety Y cannot support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n$.

Sketch of the proof.

A smooth projective *n*-variety X with a birational morphism onto an aspherical smooth projective *n*-variety Y cannot support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n$.

Sketch of the proof.

For simplicity, assume X to be **aspherical**.

A smooth projective *n*-variety X with a birational morphism onto an **aspherical** smooth projective *n*-variety Y **cannot** support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n$.

Sketch of the proof.

For simplicity, assume X to be **aspherical**. Thus, X does **not** any positive-dimensional complex subvariety.

A smooth projective *n*-variety X with a birational morphism onto an **aspherical** smooth projective *n*-variety Y **cannot** support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n.$

Sketch of the proof.

For simplicity, assume X to be **aspherical**. Thus, \hat{X} does **not** any positive-dimensional complex subvariety. Mori's cone theorem implies K_X is **nef** and then in particular **pseudo-effective**. Demailly's analytical description of the **pseudo-effective** cone implies the existence of a **positive** (1, 1)-current T representing the cohomology class $c_1(K_X)$.

A smooth projective *n*-variety X with a birational morphism onto an **aspherical** smooth projective *n*-variety Y **cannot** support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n.$

Sketch of the proof.

For simplicity, assume X to be **aspherical**. Thus, \widetilde{X} does **not** any positive-dimensional complex subvariety. Mori's cone theorem implies K_X is **nef** and then in particular **pseudo-effective**. Demailly's analytical description of the **pseudo-effective** cone implies the existence of a **positive** (1, 1)-current T representing the cohomology class $c_1(K_X)$. In particular, we have $\langle T, \omega^{n-1} \rangle \geq 0$.

A smooth projective *n*-variety X with a birational morphism onto an **aspherical** smooth projective *n*-variety Y **cannot** support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n$.

Sketch of the proof.

For simplicity, assume X to be **aspherical**. Thus, \widetilde{X} does **not** any positive-dimensional complex subvariety. Mori's cone theorem implies K_X is **nef** and then in particular **pseudo-effective**. Demailly's analytical description of the **pseudo-effective** cone implies the existence of a **positive** (1, 1)-current T representing the cohomology class $c_1(K_X)$. In particular, we have $\langle T, \omega^{n-1} \rangle \geq 0$. On the other hand:

$$\langle T, \omega^{n-1} \rangle = -\frac{1}{2\pi} \int_X \operatorname{Ric}_{g_\omega} \wedge \omega^{n-1} = -\frac{1}{2\pi} \int_X \frac{2}{n} s_{g_\omega} \omega^n < 0,$$

if $s_{g_{\omega}} > 0$.

A smooth projective *n*-variety X with a birational morphism onto an **aspherical** smooth projective *n*-variety Y **cannot** support a Kähler metric ω of positive scalar curvature. Moreover, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} = 2n$.

Sketch of the proof.

For simplicity, assume X to be **aspherical**. Thus, \widetilde{X} does **not** any positive-dimensional complex subvariety. Mori's cone theorem implies K_X is **nef** and then in particular **pseudo-effective**. Demailly's analytical description of the **pseudo-effective** cone implies the existence of a **positive** (1, 1)-current T representing the cohomology class $c_1(K_X)$. In particular, we have $\langle T, \omega^{n-1} \rangle \geq 0$. On the other hand:

$$\langle T, \omega^{n-1} \rangle = -\frac{1}{2\pi} \int_X \operatorname{Ric}_{g_\omega} \wedge \omega^{n-1} = -\frac{1}{2\pi} \int_X \frac{2}{n} s_{g_\omega} \omega^n < 0,$$

if $s_{g_{\omega}} > 0$. Contradiction!

Let X be a smooth projective *n*-variety that supports a Kähler metric of positive scalar curvature. We the have $\dim_{mc} \widetilde{X} \leq \dim_{MC} \widetilde{X} \leq 2n - 1$. In the case n = 2, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} \leq 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let X be a smooth projective *n*-variety that supports a Kähler metric of positive scalar curvature. We the have $\dim_{mc} \widetilde{X} \leq \dim_{MC} \widetilde{X} \leq 2n - 1$. In the case n = 2, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} \leq 2$.

The proof, among other things, relies on the following celebrated papers:

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let X be a smooth projective *n*-variety that supports a Kähler metric of positive scalar curvature. We the have $\dim_{mc} \widetilde{X} \leq \dim_{MC} \widetilde{X} \leq 2n - 1$. In the case n = 2, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} \leq 2$.

The proof, among other things, relies on the following celebrated papers:

S. Boucksom, J.-P. Demailly, M. Paun, P. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), 201-248.

(日本) (日本) (日本)

Let X be a smooth projective *n*-variety that supports a Kähler metric of positive scalar curvature. We the have $\dim_{mc} \widetilde{X} \leq \dim_{MC} \widetilde{X} \leq 2n - 1$. In the case n = 2, we have $\dim_{mc} \widetilde{X} = \dim_{MC} \widetilde{X} \leq 2$.

The proof, among other things, relies on the following celebrated papers:

S. Boucksom, J.-P. Demailly, M. Paun, P. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), 201-248.

C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, *Existence of minimal models for varieties of general type*, **J. Amer. Math. Soc** 23 (2009), no. 5, 405-468.

<ロ> (四) (四) (三) (三) (三)

• In particular, the proof relies upon some of the **LATEST** developments in the theories of the minimal model and positivity in algebraic geometry.

向下 イヨト イヨト

- In particular, the proof relies upon some of the **LATEST** developments in the theories of the minimal model and positivity in algebraic geometry.
- This is in contrast with the **LOW-TECH** proof of the Kähler version of the Gromov-Lawson conjecture.

• • = • • = •

- In particular, the proof relies upon some of the **LATEST** developments in the theories of the minimal model and positivity in algebraic geometry.
- This is in contrast with the **LOW-TECH** proof of the Kähler version of the Gromov-Lawson conjecture.
- This suggests that trying to solve the Gromov-Lawson conjecture by first solving the Gromov conjecture may be a **BAD** idea!

向下 イヨト イヨト

- In particular, the proof relies upon some of the **LATEST** developments in the theories of the minimal model and positivity in algebraic geometry.
- This is in contrast with the **LOW-TECH** proof of the Kähler version of the Gromov-Lawson conjecture.
- This suggests that trying to solve the Gromov-Lawson conjecture by first solving the Gromov conjecture may be a **BAD** idea!
- Note that even in the Kähler setting, we only get a weak Gromov conjecture statement. Indeed, there are topological subtleties in showing that macroscopic dimension is a birational invariant.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- In particular, the proof relies upon some of the **LATEST** developments in the theories of the minimal model and positivity in algebraic geometry.
- This is in contrast with the **LOW-TECH** proof of the Kähler version of the Gromov-Lawson conjecture.
- This suggests that trying to solve the Gromov-Lawson conjecture by first solving the Gromov conjecture may be a **BAD** idea!
- Note that even in the Kähler setting, we only get a weak Gromov conjecture statement. Indeed, there are topological subtleties in showing that macroscopic dimension is a birational invariant.
- As a by-product of the proof of this theorem, we get $\dim_{mc} = \dim_{MC}$ for **Kähler** surfaces with positive scalar curvature. Our discovery that certain symmetric squares of curves have $\dim_{mc} \neq \dim_{MC}$ implies that this result does **NOT** extend to higher dimensions starting with threefolds!

(日本)(日本)(日本)

æ

 $\quad \text{and} \quad$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

and

It is always a pleasure to visit Stony Brook!

(1日) (1日) (日)

э

and

It is always a pleasure to visit Stony Brook!

THE END

臣