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Discussion will be based on results from

Curvature, macroscopic dimensions, and symmetric products of surfaces

arXiv2503.01779v3 [math.GT] 41 pp

joint with my colleague A. Dranishnikov and his student E. Jauhari.
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The Goals of this Lecture

Recall the Gromov-Lawson, Gromov, Rational Inessentiality
Conjectures arising in the study of closed Riemannian manifolds with
positive scalar curvature;

Prove that Symmetric Products of Surfaces sharply distinguish
between two distinct notions of macroscopic dimension introduced
for the study of Gromov Conjecture;

Present a detailed study of the curvature and symplectic asphericity
properties of Symmetric Products of Surfaces;

Address the Gromov-Lawson and Gromov Conjectures in the
Kähler projective setting and draw new connections between complex
algebraic geometry and macroscopic dimensions.
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Introduction: Metrics, Curvature, and Macroscopic
Dimensions

The objects of this talk are Riemannian Manifolds and their Riemannian
universal covers.

Definition

Let Mn be a smooth orientable n-manifold (e.g., a smooth embedded
surface in R3). A Riemannian metric g on M is choice of a positive definite
inner product on each tangent space TpM varying smoothly with p ∈ M.

Given a smooth path in a Riemannian manifold (M, g)

α : [a, b] → M,

we define its length by setting

L(α) =

∫ b

a
g(α′(t), α′(t))1/2dt, α′(t) ∈ Tα(t)M.

We then define the distance between p1, p2 ∈ M, denoted by d(p1, p2), to
be the infimun for L over all smooth paths joining p1 and p2.
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Let (Mn, g) be a Riemannian manifold. Curves that locally minimize
distance are called Geodesics.

Following the geodesics starting at a point p ∈ M, we obtain the so-called
exponential map:

expp : TpM
n → Mn, TpM

n ≃ Rn.

The exponential map is a local diffeomorphism around 0 ∈ TpM
n.

It defines local coordinates around p ∈ M known as Geodesic Normal
Coordinates.
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Pictorially, we have:
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Volumes, Ricci Curvature, and Scalar Curvature

The expansion of the Volume Element in Geodesic Normal Coordinates
and is given by:

dµg =
(
1− 1

6
Ricijx

ix j + O(|x |3)
)
dx1 ∧ ... ∧ dxn

This defines a symmetric two tensor (a symmetric bilinear form on each
tangent space TpM)

Ricg = Ricijdx
i ⊗ dx j

know as the Ricci Tensor. Similarly, the Scalar Curvature function

sg : M −→ R

can be defined for any p ∈ M by the Taylor expansion

Volg (Bp(R))

VolRn(B0(R))
= 1− sg (p)

6(n + 2)
R2 + o(R2)
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In particular, Riemannian manifolds (Mn, g) with positive scalar
curvature are microscopically smaller than Euclidean space.

What about macroscopically? Well, in this case this question makes
more sense on the Riemannian universal cover (M̃n, g̃).

Conjecturally, if (Mn, g) has sg > 0 then the universal cover M̃ is small.

Here small means that M̃ looks lower dimensional on large scales, e.g., M̃
is compact or it splits as a product where one of the factors is compact.

Ok, what does this mean?!? At this stage, it seems we are simply (and
optimistically!) generalizing the picture from the Cheeger-Gromoll splitting
theorem under the much stronger non-negative Ricci curvature
assumption.
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Macroscopic Dimension(s)

Definition (Gromov, 1996)

For a closed Riemannian manifold M, its macroscopic dimension,
denoted dimmc M, is the smallest integer m such that there exists a
uniformly cobounded, proper, continuous map

f : M → Km

to an m-dimensional simplicial complex Km.

For example, if M is compact then dimmc M = 0.

Similarly, if M is a Riemannian product with a compact factor, say
Sk , we have:

Mn = Nn−k × Sk ⇒ dimmc M ≤ n − k .
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Definition (Dranishnikov, 2011)

For a closed Riemannian manifold M, its modified macroscopic
dimension, denoted dimMC M, is the smallest integer m such that there
exists a uniformly cobounded, proper, Lipschitz map

f : M → Km

to an m-dimensional simplicial complex Km.

We clearly have:

dimmc M ≤ dimMC M ≤ dimM

Question

Let M be a closed Riemannian manifol and let M̃ be its Riemannian
universal cover. Under which condition on M do we have the equality

dimmc M̃ = dimMC M̃?
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Where did all of these coarse ideas begin?

Of course here at Stony Brook (and it was much smoother at first!),
where these two gentlemen met in the late 70’s:

M. Gromov∗ (1943 – ) and B. Lawson∗∗ (1942 – ) both back then.

∗Author: Dirk Ferus. Source: Archives of the Mathematisches Forschungsinstitut
Oberwolfach.

∗∗ Author: George M. Bergman. Source: Archives of the Mathematisches
Forschungsinstitut Oberwolfach.
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In one of their masterpieces from the 80’s

More precisely, on page 174 of

M. Gromov, B. Lawson Positive scalar curvature and the Dirac operator
on complete riemannian manifolds, Publications mathématiques de
l’I.H.É.S., (1983), tome 58, 83-196.

one finds the following tantalizing result:
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Low Dimensional Results

Corollary 10.11 (when combined with Perelman’s proof of Thurston
geometrizazion conjecture) implies that

(M3, g), sg > 0, |π1| = ∞

⇒ dimmc M̃ = dimMC M̃ = 1.

Theorem (DC-Dranishnikov-Jauhari, 2025)

If M is a closed 2- or 3- manifold, then dimmc M̃ = dimMC M̃.

Many more results arise from the proof of this theorem...
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For example, one has that dimmc M̃ = dimMC M̃ = 3 if and only if
M3 is either aspherical or it has an aspherical component in its
prime decomposition.

Similarly, one has that dimmc M̃ = dimMC M̃ = 1 if and only if M3

is a connected sum of S2 × S1’s and spherical space forms and it
has |π1| = ∞.

Finally, one observes that

(M3, g), sg > 0

⇔ dimmc M̃ = dimMC M̃ ≤ 1

and moreover this is the case if and only if M3 is rationally
inessential∗.

∗Definition: A closed orientable n-manifold M is rationally essential if
u∗[M] ̸= 0 ∈ Hn(Bπ1(M);Q) where u : M → Bπ1 classifies the fundamental group.
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(M3, g), sg > 0 ⇔ dimmc M̃ = dimMC M̃ ≤ 1

and moreover this is the case if and only if M3 is rationally
inessential∗.

∗Definition: A closed orientable n-manifold M is rationally essential if
u∗[M] ̸= 0 ∈ Hn(Bπ1(M);Q) where u : M → Bπ1 classifies the fundamental group.

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 15 / 29



For example, one has that dimmc M̃ = dimMC M̃ = 3 if and only if
M3 is either aspherical or it has an aspherical component in its
prime decomposition.

Similarly, one has that dimmc M̃ = dimMC M̃ = 1 if and only if M3

is a connected sum of S2 × S1’s and spherical space forms and it
has |π1| = ∞.

Finally, one observes that

(M3, g), sg > 0 ⇔ dimmc M̃ = dimMC M̃ ≤ 1

and moreover this is the case if and only if M3 is rationally
inessential∗.

∗Definition: A closed orientable n-manifold M is rationally essential if
u∗[M] ̸= 0 ∈ Hn(Bπ1(M);Q) where u : M → Bπ1 classifies the fundamental group.

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 15 / 29



Gromov-Lawson and Gromov Conjectures

Conjecture (Gromov & Lawson, 80’s)

A closed aspherical n-manifold cannot support a Riemannian metric of
positive scalar curvature.

A closely related conjecture in terms of macroscopic dimension is:

Conjecture (Gromov, 1983 & 1996)

A closed manifold (Mn, g) with sg > 0 satisfies dimmc M̃ ≤ n − 2

Both Conjectures are TRUE for n = 2, 3!

Gromov Conjecture implies Gromov-Lawson Conjecture as
dimmc M̃ = dimMC M̃ = n when Mn is aspherical.

Note that this implication still holds under the so-called Weak
Gromov Conjecture dimmc M̃ ≤ n − 1.
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dimmc = dimMC for Riemannian Universal Covers?!?

Positive Results

Theorem (DC-Dranishnikov-Jauhari, 2025)

If Mn admits a metric of non-negative Ricci curvature, we have

dimmc M̃ = dimMC M̃ ≤ n with equality if and only if Mn is a flat
n-manifold.

Assume there exists a degree one map f : M → N to a closed,
orientable, closed n-manifold with dimmc Ñ = n such that
f∗ : π1(M) → π1(N) is an isomorphism. We then have

dimmc M̃ = dimMC M̃ = n .

For a given n-manifold M with dimmc M̃ = n ≥ 3, we have

dimmc M̃#N = dimMC M̃#N = n for any closed n-manifold N.

dimmc M̃ = dimMC M̃ for a closed manifold Mn with n = 2, 3.
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Negative Results: dimmc ̸= dimMC

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be a closed orientable surface of genus g, and let SPn(Mg ) be the
symmetric n-th power of Mg .

If n ≥ g, we have dimmc
˜SPn(Mg ) = dimMC

˜SPn(Mg ) = 2g.

If n < g, we have

dimMC
˜SPn(Mg ) = 2n , dimmc

˜SPn(Mg ) ≤ 2n − 1 .

If n < g and g − n is even, we have

dimMC
˜SPn(Mg ) = 2n , dimmc

˜SPn(Mg ) ≤ 2n − 2 .

Recall that dimR SPn(Mg ) = 2n!∗
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∗Extended Footnote: Symmetric Products of Surfaces

Let Mg be a closed orientable surface of genus g . SPn(Mg ) is
defined as the orbit space of the action of the symmetric group Sn on
the n-product Mg × ...×Mg .

The Fundamental Theorem of Algebra establishes an isomorphism
between ordered and unordered n-tuples in C so that SPn(C) = Cn!

Thus, SPn(Mg ) is naturally a complex manifold if we equip Mg with
a complex structure.

More precisely, given a complex curve Mg , SP
n(Mg ) is a smooth

projective variety parametrizing the set of effective divisors of
degree n on Mg , i.e., formal sums

∑n
λ=1 pλ, pλ ∈ Mg .

We have the Abel-Jacobi map µn : SPn(Mg ) → Jac(Mg ) defined as

µn(Q) :=

(∑
λ

∫ pλ

p0

ω1, . . . ,
∑
λ

∫ pλ

p0

ωg

)
,Q =

n∑
λ=1

pλ, p0 ∈ Mg

ω1, ..., ωg is a basis for H0(Mg ,KMg ).
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Back to the theorem dimmc ̸= dimMC : Comments

Dranishnikov in 2013 produced the first examples of closed
m-manifolds M with π1 amenable dimmc M̃ < dimMC M̃ = m for
m ≥ 5.

SP2(Mg ) are now examples of closed 4-manifolds with such property
for any g ≥ 3!

The class of examples we produce (together with products with the
circle) is dimensionally sharp. Recall that we proved dimmc = dimMC

for universal covers of closed 2- and 3-manifolds.

We show that SPn(Mg ) are rationally essential for g > n therefore
providing new counterxamples to Gromov’s Rational Inessentiality
Conjecture∗ in all dimensions m ≥ 4.

We observe that Gromov’s Rational Inessentiality Conjecture holds
true in dimension m = 3.
∗Statement: If M is closed orientable n-manifold with dimmc M̃ < n, then M is

not rationally essential

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 20 / 29



Back to the theorem dimmc ̸= dimMC : Comments

Dranishnikov in 2013 produced the first examples of closed
m-manifolds M with π1 amenable dimmc M̃ < dimMC M̃ = m for
m ≥ 5.

SP2(Mg ) are now examples of closed 4-manifolds with such property
for any g ≥ 3!

The class of examples we produce (together with products with the
circle) is dimensionally sharp. Recall that we proved dimmc = dimMC

for universal covers of closed 2- and 3-manifolds.

We show that SPn(Mg ) are rationally essential for g > n therefore
providing new counterxamples to Gromov’s Rational Inessentiality
Conjecture∗ in all dimensions m ≥ 4.

We observe that Gromov’s Rational Inessentiality Conjecture holds
true in dimension m = 3.
∗Statement: If M is closed orientable n-manifold with dimmc M̃ < n, then M is

not rationally essential

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 20 / 29



Back to the theorem dimmc ̸= dimMC : Comments

Dranishnikov in 2013 produced the first examples of closed
m-manifolds M with π1 amenable dimmc M̃ < dimMC M̃ = m for
m ≥ 5.

SP2(Mg ) are now examples of closed 4-manifolds with such property
for any g ≥ 3!

The class of examples we produce (together with products with the
circle) is dimensionally sharp. Recall that we proved dimmc = dimMC

for universal covers of closed 2- and 3-manifolds.

We show that SPn(Mg ) are rationally essential for g > n therefore
providing new counterxamples to Gromov’s Rational Inessentiality
Conjecture∗ in all dimensions m ≥ 4.

We observe that Gromov’s Rational Inessentiality Conjecture holds
true in dimension m = 3.
∗Statement: If M is closed orientable n-manifold with dimmc M̃ < n, then M is

not rationally essential

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 20 / 29



Back to the theorem dimmc ̸= dimMC : Comments

Dranishnikov in 2013 produced the first examples of closed
m-manifolds M with π1 amenable dimmc M̃ < dimMC M̃ = m for
m ≥ 5.

SP2(Mg ) are now examples of closed 4-manifolds with such property
for any g ≥ 3!

The class of examples we produce (together with products with the
circle) is dimensionally sharp. Recall that we proved dimmc = dimMC

for universal covers of closed 2- and 3-manifolds.

We show that SPn(Mg ) are rationally essential for g > n therefore
providing new counterxamples to Gromov’s Rational Inessentiality
Conjecture∗ in all dimensions m ≥ 4.

We observe that Gromov’s Rational Inessentiality Conjecture holds
true in dimension m = 3.
∗Statement: If M is closed orientable n-manifold with dimmc M̃ < n, then M is

not rationally essential

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 20 / 29



Back to the theorem dimmc ̸= dimMC : Comments

Dranishnikov in 2013 produced the first examples of closed
m-manifolds M with π1 amenable dimmc M̃ < dimMC M̃ = m for
m ≥ 5.

SP2(Mg ) are now examples of closed 4-manifolds with such property
for any g ≥ 3!

The class of examples we produce (together with products with the
circle) is dimensionally sharp. Recall that we proved dimmc = dimMC

for universal covers of closed 2- and 3-manifolds.

We show that SPn(Mg ) are rationally essential for g > n therefore
providing new counterxamples to Gromov’s Rational Inessentiality
Conjecture∗ in all dimensions m ≥ 4.

We observe that Gromov’s Rational Inessentiality Conjecture holds
true in dimension m = 3.

∗Statement: If M is closed orientable n-manifold with dimmc M̃ < n, then M is
not rationally essential

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 20 / 29



Back to the theorem dimmc ̸= dimMC : Comments

Dranishnikov in 2013 produced the first examples of closed
m-manifolds M with π1 amenable dimmc M̃ < dimMC M̃ = m for
m ≥ 5.

SP2(Mg ) are now examples of closed 4-manifolds with such property
for any g ≥ 3!

The class of examples we produce (together with products with the
circle) is dimensionally sharp. Recall that we proved dimmc = dimMC

for universal covers of closed 2- and 3-manifolds.

We show that SPn(Mg ) are rationally essential for g > n therefore
providing new counterxamples to Gromov’s Rational Inessentiality
Conjecture∗ in all dimensions m ≥ 4.

We observe that Gromov’s Rational Inessentiality Conjecture holds
true in dimension m = 3.
∗Statement: If M is closed orientable n-manifold with dimmc M̃ < n, then M is

not rationally essential

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 20 / 29



It is interesting to note that these examples are geometrically sharp!

What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



It is interesting to note that these examples are geometrically sharp!

What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



It is interesting to note that these examples are geometrically sharp!
What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



It is interesting to note that these examples are geometrically sharp!
What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



It is interesting to note that these examples are geometrically sharp!
What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



It is interesting to note that these examples are geometrically sharp!
What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



It is interesting to note that these examples are geometrically sharp!
What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



It is interesting to note that these examples are geometrically sharp!
What does this mean and why?!?

Theorem (DC-Dranishnikov-Jauhari, 2025)

Let Mg be generic in the moduli space Mg . For g ≥ 2n− 1, we have the
following:

SPn(Mg ) supports Kähler metrics of non-positive holomorphic
sectional curvature;

SPn(Mg ) is symplectically aspherical∗;

˜SPn(Mg ) is Stein;

More non-positively curved type behavior....

∗Definition: (M2n, ω) is said to be symplectically aspherical if for any smooth map

f : S2 → M, we have

∫
S2

f ∗ω = 0 .

Luca F. Di Cerbo Macroscopic Dimensions and Symmetric Products 21 / 29



Comments Continued

π2(SP
n(Mg )) is always infinite (but not always finitely generated!),

so that SPn(Mg ) is never aspherical.

dimmc = dimMC for aspherical manifolds but not for
symplectically aspherical ones.

Similarly, dimmc = dimMC for manifolds with non-positive
sectional curvature but not for Kähler manifolds with non-positive
holomorphic sectional curvature.

More statements along these lines.

Symmetric products of surfaces distinguish the two distinct notions of
macroscopic dimension in a dimensionally and geometrically sharp
way.
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Kähler versions of Gromov-Lawson & Gromov Conjectures

Kähler Gromov-Lawson & Gromov type conjectures:

Conjecture

A smooth projective aspherical n-variety cannot support a Kähler metric
of positive scalar curvature.

Similarly, we can formulate

Conjecture

A smooth projective variety X n equipped with a Kähler metric ω with
sgω > 0 satisfies dimmc X̃ ≤ 2n − 2.
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Note that these conjectures CRUCIALLY add the Kähler condition
on the metric. In particular, they do NOT imply the Gromov-Lawson
& Gromov conjectures for Kähler manifolds.

The projective assumption is made in order to use results from the
mimimal model theory in algebraic geometry.

Both Conjectures are TRUE when n = 2.

This follows from one of
S.T. Yau’s first papers:

On the curvature of compact Hermitian manifolds, Invent. Math.
25 (1974), 213-239.

The original Gromov-Lawson & Gromov conjectures are TRUE for
Kähler surfaces.

This follows from C. LeBrun’s work on the scalar
curvature of such spaces using Seiberg-Witten theory:

On the curvature of complex surfaces, Geom. Funct. Analysis 5
(1995), 619-628.
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What is new here?

well

The Kähler versions of the Gromov-Lawson & Gromov Conjectures
we highlighted before can be proved

Let’s dive into this!
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Theorem (DC-Dranishnikov-Jauhari, 2025)

A smooth projective n-variety X with a birational morphism onto an
aspherical smooth projective n-variety Y cannot support a Kähler metric
ω of positive scalar curvature. Moreover, we have
dimmc X̃ = dimMC X̃ = 2n.

Sketch of the proof.

For simplicity, assume X to be aspherical. Thus, X̃ does not any
positive-dimensional complex subvariety. Mori’s cone theorem implies KX

is nef and then in particular pseudo-effective. Demailly’s analytical
description of the pseudo-effective cone implies the existence of a positive
(1, 1)-current T representing the cohomology class c1(KX ). In particular,
we have ⟨T , ωn−1⟩ ≥ 0. On the other hand:

⟨T , ωn−1⟩ = − 1

2π

∫
X
Ricgω ∧ ωn−1 = − 1

2π

∫
X

2

n
sgωω

n < 0,

if sgω > 0. Contradiction!
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Theorem (DC-Dranishnikov-Jauhari, 2025)

Let X be a smooth projective n-variety that supports a Kähler metric of
positive scalar curvature. We the have dimmc X̃ ≤ dimMC X̃ ≤ 2n − 1. In
the case n = 2, we have dimmc X̃ = dimMC X̃ ≤ 2.

The proof, among other things, relies on the following celebrated
papers:

S. Boucksom, J.-P. Demailly, M. Paun, P. Peternell, The pseudo-effective
cone of a compact Kähler manifold and varieties of negative Kodaira

dimension, J. Algebraic Geom. 22 (2013), 201-248.

C. Birkar, P. Cascini, C. D. Hacon, J. McKernan, Existence of minimal
models for varieties of general type, J. Amer. Math. Soc 23 (2009), no.

5, 405-468.
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In particular, the proof relies upon some of the LATEST
developments in the theories of the minimal model and positivity in
algebraic geometry.

This is in contrast with the LOW-TECH proof of the Kähler version
of the Gromov-Lawson conjecture.

This suggests that trying to solve the Gromov-Lawson conjecture by
first solving the Gromov conjecture may be a BAD idea!

Note that even in the Kähler setting, we only get a weak Gromov
conjecture statement. Indeed, there are topological subtleties in
showing that macroscopic dimension is a birational invariant.

As a by-product of the proof of this theorem, we get
dimmc = dimMC for Kähler surfaces with positive scalar curvature.
Our discovery that certain symmetric squares of curves have
dimmc ̸= dimMC implies that this result does NOT extend to higher
dimensions starting with threefolds!
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Thanks for listening,

and

It is always a pleasure to visit Stony Brook!

THE END
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