Seshadri Constants, Fake Projective Planes, and Related Topics

Luca F. Di Cerbo
University of Florida

Topology \& Dynamics Seminar, University of Florida, March 10, 2020

Discussion will mention results from

Discussion will mention results from

The Toledo Invariant, and Seshadri Constants of Fake Projective Planes

Discussion will mention results from

The Toledo Invariant, and Seshadri Constants of Fake Projective Planes

Journal of the Mathematical Society of Japan 69 (2017), no.4, 1601-1610

Most recent results joint with

Most recent results joint with

Gennaro Di Brino
Senior Data Scientist at Docebo, Toronto Canada - Milan Italy

Most recent results joint with

Gennaro Di Brino
 Senior Data Scientist at Docebo, Toronto Canada - Milan Italy

Communications in Contemporary Mathematics
20 (2018), no.1, 1650066

The Goal(s) of this Lecture

- Give an overview of the study of Seshadri Constants on Algebraic Surfaces (Especially with Picard Number 1);

The Goal(s) of this Lecture

- Give an overview of the study of Seshadri Constants on Algebraic Surfaces (Especially with Picard Number 1);
- Compute the Seshadri Constants of Ample Line Bundles on Fake Projective Planes;

The Goal(s) of this Lecture

- Give an overview of the study of Seshadri Constants on Algebraic Surfaces (Especially with Picard Number 1);
- Compute the Seshadri Constants of Ample Line Bundles on Fake Projective Planes;
- Ideally, inspire you to find this Stuff Interesting;

The Goal(s) of this Lecture

- Give an overview of the study of Seshadri Constants on Algebraic Surfaces (Especially with Picard Number 1);
- Compute the Seshadri Constants of Ample Line Bundles on Fake Projective Planes;
- Ideally, inspire you to find this Stuff Interesting;
- Finally, I want to discuss applications of this circle of ideas to Exceptional Collections and Bicanonical Maps on Fake Projective Planes.

Introduction

Introduction

The objects of this talk are Seshadri Constants of Positive Line Bundles.

Introduction

The objects of this talk are Seshadri Constants of Positive Line Bundles.

Definition

Let X be a smooth projective variety (surface) and L a Nef (ample) line bundle on X. Then

$$
\epsilon(L, x):=\inf _{C \supset x} \frac{L \cdot C}{m u l t_{x} C},
$$

where the infimum is taken over all curves $C \subset X$ containing the point x, is the Seshadri Constant of L at $x \in X$. Finally

$$
\epsilon(L):=\inf _{x \in X} \epsilon(L, x)
$$

is the Global Seshadri Constant of L.

Seshadri Constants for Nef Line Bundles were introduced in

Seshadri Constants for Nef Line Bundles were introduced in
J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990), 87-104, Lect. Notes in Math., 1507, Springer, Berlin, 1992.

Seshadri Constants for Nef Line Bundles were introduced in
J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990), 87-104, Lect. Notes in Math., 1507, Springer, Berlin, 1992.

J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990), 87-104, Lect. Notes in Math., 1507, Springer, Berlin, 1992.

JEAN-PIERRE DEMAILLY (1957-), Stefan Bergman Prize in 2015.

These Numerical Invariants were named after Seshadri because of the following result

These Numerical Invariants were named after Seshadri because of the following result

Theorem (Seshadri's Criterion for Ampleness)

Let X be a smooth projective variety and L a line bundle on X. Then L is Ample if and only if there is $\delta>0$ such that

$$
\frac{L \cdot C}{m^{\prime} t_{X} C} \geq \delta
$$

for every point $x \in X$ and every curve $C \subset X$ passing through x.

These Numerical Invariants were named after Seshadri because of the following result

Theorem (Seshadri's Criterion for Ampleness)

Let X be a smooth projective variety and L a line bundle on X. Then L is Ample if and only if there is $\delta>0$ such that

$$
\frac{L \cdot C}{m^{\prime} t_{X} C} \geq \delta
$$

for every point $x \in X$ and every curve $C \subset X$ passing through x.

In other words

These Numerical Invariants were named after Seshadri because of the following result

Theorem (Seshadri's Criterion for Ampleness)

Let X be a smooth projective variety and L a line bundle on X. Then L is Ample if and only if there is $\delta>0$ such that

$$
\frac{L \cdot C}{m^{\prime} t_{X} C} \geq \delta
$$

for every point $x \in X$ and every curve $C \subset X$ passing through x.

In other words

L is Ample $\Longleftrightarrow \epsilon(L) \geq \delta>0$

Seshadri Constants on Algebraic Surfaces

Seshadri Constants on Algebraic Surfaces

Theorem (Ein-Lazarsfeld, 1993)

Let S be a smooth projective surface and L an ample line bundle on S. Then

$$
\epsilon(L, x) \geq 1
$$

for all points $x \in S$ except possibly countably many.

Seshadri Constants on Algebraic Surfaces

Theorem (Ein-Lazarsfeld, 1993)

Let S be a smooth projective surface and L an ample line bundle on S. Then

$$
\epsilon(L, x) \geq 1
$$

for all points $x \in S$ except possibly countably many.

What about points $x \in S$ such that $\epsilon(L, x)<1$?

Seshadri Constants on Algebraic Surfaces

Theorem (Ein-Lazarsfeld, 1993)

Let S be a smooth projective surface and L an ample line bundle on S. Then

$$
\epsilon(L, x) \geq 1
$$

for all points $x \in S$ except possibly countably many.

What about points $x \in S$ such that $\epsilon(L, x)<1$?

Theorem (Miranda, 1994)

For any $\delta>0$, there exists a surface S, a point $x_{0} \in S$ and an Ample line bundle L on S such that

$$
\epsilon\left(L, x_{0}\right)<\delta .
$$

Miranda's Examples have the property that $\mathbf{P i c}\left(S_{\delta}\right) \rightarrow \infty$ as $\delta \rightarrow 0$

Miranda's Examples have the property that $\mathbf{P i c}\left(S_{\delta}\right) \rightarrow \infty$ as $\delta \rightarrow 0$

Theorem (Oguiso, 2002)

Let S be a smooth projective surface, and let L be an Ample line bundle on S. For any $0<\gamma<1$, the set of points $x \in S$ such that

$$
\epsilon(L, x)<1-\gamma
$$

is finite.

Miranda's Examples have the property that $\mathbf{P i c}\left(S_{\delta}\right) \rightarrow \infty$ as $\delta \rightarrow 0$

Theorem (Oguiso, 2002)

Let S be a smooth projective surface, and let L be an Ample line bundle on S. For any $0<\gamma<1$, the set of points $x \in S$ such that

$$
\epsilon(L, x)<1-\gamma
$$

is finite.

Thus, if $\operatorname{Pic}(S)=1 \Rightarrow$

Miranda's Examples have the property that $\mathbf{P i c}\left(S_{\delta}\right) \rightarrow \infty$ as $\delta \rightarrow 0$

Theorem (Oguiso, 2002)

Let S be a smooth projective surface, and let L be an Ample line bundle on S. For any $0<\gamma<1$, the set of points $x \in S$ such that

$$
\epsilon(L, x)<1-\gamma
$$

is finite.

Thus, if $\operatorname{Pic}(S)=1 \Rightarrow$ There exists $\epsilon_{0}>0$ such that

Miranda's Examples have the property that $\mathbf{P i c}\left(S_{\delta}\right) \rightarrow \infty$ as $\delta \rightarrow 0$

Theorem (Oguiso, 2002)

Let S be a smooth projective surface, and let L be an Ample line bundle on S. For any $0<\gamma<1$, the set of points $x \in S$ such that

$$
\epsilon(L, x)<1-\gamma
$$

is finite.

Thus, if $\operatorname{Pic}(S)=1 \Rightarrow$ There exists $\epsilon_{0}>0$ such that
$\epsilon(L) \geq \epsilon_{0}$ for any ample line bundle L on S !

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

- As $\operatorname{Pic}(S)=1 \Rightarrow S$ is Minimal

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

- As $\operatorname{Pic}(S)=1 \Rightarrow S$ is Minimal
- If $\operatorname{Kod}(S)=-\infty \Rightarrow S=\mathbb{P}^{2}$

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

- As $\operatorname{Pic}(S)=1 \Rightarrow S$ is Minimal
- If $\operatorname{Kod}(S)=-\infty \Rightarrow S=\mathbb{P}^{2}$

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

- As $\operatorname{Pic}(S)=1 \Rightarrow S$ is Minimal
- If $\operatorname{Kod}(S)=-\infty \Rightarrow S=\mathbb{P}^{2} \Longrightarrow \epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k), x\right)=\epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k)\right)=k$

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

- As $\operatorname{Pic}(S)=1 \Rightarrow S$ is Minimal
- If $\operatorname{Kod}(S)=-\infty \Rightarrow S=\mathbb{P}^{2} \quad \Longrightarrow \quad \epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k), x\right)=\epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k)\right)=k$
- $\operatorname{Kod}(S)=0 \Rightarrow S=K 3$, Abelian and their finite quotients

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

- As $\operatorname{Pic}(S)=1 \Rightarrow S$ is Minimal
- If $\operatorname{Kod}(S)=-\infty \Rightarrow S=\mathbb{P}^{2} \Longrightarrow \epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k), x\right)=\epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k)\right)=k$
- $\operatorname{Kod}(S)=0 \Rightarrow S=K 3$, Abelian and their finite quotients
- If $S=$ Abelian $\Rightarrow S$ is Homogeneous $\Longrightarrow \epsilon(L, x)=\epsilon(L) \geq 1$

Theorem (Szemberg, 2008)

Let S be a smooth projective surface with $\operatorname{Pic}(S)=1$, and let L be an ample line bundle on S. For any point $x \in S$ we have

- $\epsilon(L, x) \geq 1$ if S is not if general type;
- $\epsilon(L, x) \geq \frac{1}{1+\sqrt[4]{K_{S}^{2}}}$.

Moreover both bounds are sharp.

Remarks and Comments

- As $\operatorname{Pic}(S)=1 \Rightarrow S$ is Minimal
- If $\operatorname{Kod}(S)=-\infty \Rightarrow S=\mathbb{P}^{2} \quad \Longrightarrow \quad \epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k), x\right)=\epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k)\right)=k$
- $\operatorname{Kod}(S)=0 \Rightarrow S=K 3$, Abelian and their finite quotients
- If $S=$ Abelian $\Rightarrow S$ is Homogeneous $\Longrightarrow \epsilon(L, x)=\epsilon(L) \geq 1$
- Rest of the proof Case-by-Case Analysis

Seshadri Costants of Fake Projective Planes

Seshadri Costants of Fake Projective Planes

The Saga of Fake Projective Planes and its Heroes:

Seshadri Costants of Fake Projective Planes

The Saga of Fake Projective Planes and its Heroes:

Seshadri Costants of Fake Projective Planes

The Saga of Fake Projective Planes and its Heroes:

Definition

A Fake Projective Plane is a surface of general type S with $c_{2}(S)=3$ and $p_{g}=h^{0}\left(S ; K_{S}\right)=0$.

From now on S will always be a fake projective plane

From now on S will always be a fake projective plane

$$
\text { As } H^{1}(S ; \mathcal{O})=0 \Rightarrow \operatorname{Pic}(S)=H^{2}(S ; \mathbb{Z})
$$

From now on S will always be a fake projective plane

$$
\text { As } H^{1}(S ; \mathcal{O})=0 \Rightarrow \operatorname{Pic}(S)=H^{2}(S ; \mathbb{Z})
$$

By the Universal Coefficient Theorem \Rightarrow

From now on S will always be a fake projective plane

$$
\text { As } H^{1}(S ; \mathcal{O})=0 \Rightarrow \operatorname{Pic}(S)=H^{2}(S ; \mathbb{Z})
$$

By the Universal Coefficient Theorem \Rightarrow

$$
\operatorname{Tor}\left(H^{2}(S ; \mathbb{Z})\right)=H_{1}(S ; \mathbb{Z})=\Gamma /[\Gamma,\ulcorner] \text { is finite }
$$

From now on S will always be a fake projective plane

$$
\text { As } H^{1}(S ; \mathcal{O})=0 \Rightarrow \operatorname{Pic}(S)=H^{2}(S ; \mathbb{Z})
$$

By the Universal Coefficient Theorem \Rightarrow

$$
\begin{gathered}
\operatorname{Tor}\left(H^{2}(S ; \mathbb{Z})\right)=H_{1}(S ; \mathbb{Z})=\Gamma /[\Gamma, \Gamma] \text { is finite } \\
\text { where } \Gamma=\pi_{1}(S)
\end{gathered}
$$

From now on S will always be a fake projective plane

$$
\text { As } H^{1}(S ; \mathcal{O})=0 \Rightarrow \operatorname{Pic}(S)=H^{2}(S ; \mathbb{Z})
$$

By the Universal Coefficient Theorem \Rightarrow

$$
\begin{gathered}
\operatorname{Tor}\left(H^{2}(S ; \mathbb{Z})\right)=H_{1}(S ; \mathbb{Z})=\Gamma /[\Gamma, \Gamma] \text { is finite } \\
\text { where } \Gamma=\pi_{1}(S)
\end{gathered}
$$

Definition

For a Fake Projective Plane S, we denote by L_{1} any ample generator of the torsion free part of $\operatorname{Pic}(S)$. Similarly, for any $k \geq 1$ we set $L_{k}=L_{1}^{\otimes k}$

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X
Thus $X=\mathbb{B}^{2} / \Gamma$, where $\left(\mathbb{B}^{2}, \omega_{B}\right)$ is the unit ball in \mathbb{C}^{2} equipped with the Bergman (Kähler) metric

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X
Thus $X=\mathbb{B}^{2} / \Gamma$, where $\left(\mathbb{B}^{2}, \omega_{B}\right)$ is the unit ball in \mathbb{C}^{2} equipped with the Bergman (Kähler) metric
$\Gamma \leq \mathrm{PU}(2,1)$, co-compact torsion free

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X
Thus $X=\mathbb{B}^{2} / \Gamma$, where $\left(\mathbb{B}^{2}, \omega_{B}\right)$ is the unit ball in \mathbb{C}^{2} equipped with the
Bergman (Kähler) metric
$\Gamma \leq \mathrm{PU}(2,1)$, co-compact torsion free
$\left(X, \omega_{B}\right)$ is Einstein

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X
Thus $X=\mathbb{B}^{2} / \Gamma$, where $\left(\mathbb{B}^{2}, \omega_{B}\right)$ is the unit ball in \mathbb{C}^{2} equipped with the
Bergman (Kähler) metric
$\Gamma \leq \mathrm{PU}(2,1)$, co-compact torsion free

$$
\left(X, \omega_{B}\right) \text { is Einstein } \Rightarrow c_{1}\left(K_{X}\right)=\frac{3}{4 \pi} \omega_{B}
$$

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X
Thus $X=\mathbb{B}^{2} / \Gamma$, where $\left(\mathbb{B}^{2}, \omega_{B}\right)$ is the unit ball in \mathbb{C}^{2} equipped with the Bergman (Kähler) metric
$\Gamma \leq \mathrm{PU}(2,1)$, co-compact torsion free $\left(X, \omega_{B}\right)$ is Einstein $\Rightarrow c_{1}\left(K_{X}\right)=\frac{3}{4 \pi} \omega_{B}$

$$
K_{X} \cdot C=\int_{C^{*}} \frac{3}{4 \pi} \omega_{B}=\frac{3}{4 \pi} \int_{\bar{C}} i^{*} \omega_{B}
$$

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X
Thus $X=\mathbb{B}^{2} / \Gamma$, where $\left(\mathbb{B}^{2}, \omega_{B}\right)$ is the unit ball in \mathbb{C}^{2} equipped with the Bergman (Kähler) metric
$\Gamma \leq \mathrm{PU}(2,1)$, co-compact torsion free $\left(X, \omega_{B}\right)$ is Einstein $\Rightarrow c_{1}\left(K_{X}\right)=\frac{3}{4 \pi} \omega_{B}$

$$
K_{X} \cdot C=\int_{C^{*}} \frac{3}{4 \pi} \omega_{B}=\frac{3}{4 \pi} \int_{\bar{C}} i^{*} \omega_{B}
$$

Where $i: \bar{C} \rightarrow X$ is the normalization of C,

Curves on Ball Quotients

Let $C \subset X$ be a curve in a compact complex hyperbolic surface X
Thus $X=\mathbb{B}^{2} / \Gamma$, where $\left(\mathbb{B}^{2}, \omega_{B}\right)$ is the unit ball in \mathbb{C}^{2} equipped with the
Bergman (Kähler) metric
$\Gamma \leq \mathrm{PU}(2,1)$, co-compact torsion free
$\left(X, \omega_{B}\right)$ is Einstein $\Rightarrow c_{1}\left(K_{X}\right)=\frac{3}{4 \pi} \omega_{B}$

$$
K_{X} \cdot C=\int_{C^{*}} \frac{3}{4 \pi} \omega_{B}=\frac{3}{4 \pi} \int_{\bar{C}} i^{*} \omega_{B}
$$

Where $i: \bar{C} \rightarrow X$ is the normalization of C, and C^{*} is the smooth locus of C

$$
\text { But now } \frac{3}{4 \pi} \int_{\bar{C}} i^{*} \omega_{B}=\frac{3}{2} T(i)
$$

But now $\frac{3}{4 \pi} \int_{\bar{C}} i^{*} \omega_{B}=\frac{3}{2} T(i)$
where $T(i)=\frac{1}{2 \pi} \int_{\bar{C}} i^{*} \omega_{B}$ is the Toledo Invariant of the map $i: \bar{C} \rightarrow X$.

But now $\frac{3}{4 \pi} \int_{\bar{C}} i^{*} \omega_{B}=\frac{3}{2} T(i)$
where $T(i)=\frac{1}{2 \pi} \int_{\bar{C}} i^{*} \omega_{B}$ is the Toledo Invariant of the map $i: \bar{C} \rightarrow X$.
It is well-known that $0<T(i) \leq 2 g(\bar{C})-2$ with equality if and only if C is totally geodesic and immersed

But now $\frac{3}{4 \pi} \int_{\bar{C}} i^{*} \omega_{B}=\frac{3}{2} T(i)$
where $T(i)=\frac{1}{2 \pi} \int_{\bar{C}} i^{*} \omega_{B}$ is the Toledo Invariant of the map $i: \bar{C} \rightarrow X$.
It is well-known that $0<T(i) \leq 2 g(\bar{C})-2$ with equality if and only if C is totally geodesic and immersed

In conclusion

$$
\text { But now } \frac{3}{4 \pi} \int \frac{1}{C} i^{*} \omega_{B}=\frac{3}{2} T(i)
$$

where $T(i)=\frac{1}{2 \pi} \int_{\bar{C}} i^{*} \omega_{B}$ is the Toledo Invariant of the map $i: \bar{C} \rightarrow X$.
It is well-known that $0<T(i) \leq 2 g(\bar{C})-2$ with equality if and only if C is totally geodesic and immersed

In conclusion

Proposition

Let X be a complex hyperbolic surface. Given a reduced irreducible curve $C \subset X$, let us denote by \bar{C} its normalization. We then have

$$
0<K_{X} \cdot C \leq 3(g(\bar{C})-1)
$$

with equality if and only if C is an immersed totally geodesic curve.

Back to Fake Projective Planes

Back to Fake Projective Planes

What about totally geodesic immersed curves in fake projective planes?

Back to Fake Projective Planes

What about totally geodesic immersed curves in fake projective planes?

Proposition

There are NO immersed totally geodesic curves in a fake projective plane.

Back to Fake Projective Planes

What about totally geodesic immersed curves in fake projective planes?

Proposition

There are NO immersed totally geodesic curves in a fake projective plane.

See for example: Toledo, Möller, Stover, Yeung, Klingler, Keum, Catanese.

Back to Fake Projective Planes

What about totally geodesic immersed curves in fake projective planes?

Proposition

There are NO immersed totally geodesic curves in a fake projective plane.

See for example: Toledo, Möller, Stover, Yeung, Klingler, Keum, Catanese.

Corollary

Let C be a reduced irreducible curve in a fake projective plane S numerically equivalent to L_{k} for some $k \geq 1$. Let \bar{C} be its normalization, we then have $g(\bar{C})>1+k$.

Back to Fake Projective Planes

What about totally geodesic immersed curves in fake projective planes?

Proposition

There are NO immersed totally geodesic curves in a fake projective plane.

See for example: Toledo, Möller, Stover, Yeung, Klingler, Keum, Catanese.

Corollary

Let C be a reduced irreducible curve in a fake projective plane S numerically equivalent to L_{k} for some $k \geq 1$. Let \bar{C} be its normalization, we then have $g(\bar{C})>1+k$.

Note that if $C \equiv L_{1} \quad \Longrightarrow \quad C$ is smooth with $g(C)=3$.

Question
 Do curves numerically equivalent to L_{1} exist?

Question

Do curves numerically equivalent to L_{1} exist?
This may well be (in my opinion) the Main Open Question in geometric fake projective planes theory.

Do curves numerically equivalent to L_{1} exist?
This may well be (in my opinion) the Main Open Question in geometric fake projective planes theory.

Maybe somebody in the audience will produce a breakthrough!

Do curves numerically equivalent to L_{1} exist?
This may well be (in my opinion) the Main Open Question in geometric fake projective planes theory.

Maybe somebody in the audience will produce a breakthrough!

Nevertheless, for our purposes, we just need the following:

Question

Do curves numerically equivalent to L_{1} exist?
This may well be (in my opinion) the Main Open Question in geometric fake projective planes theory.

Maybe somebody in the audience will produce a breakthrough!

Nevertheless, for our purposes, we just need the following:

Proposition

Let C be a reduced, irreducible singular curve in a fake projective planes S. Let $C \equiv L_{k}$ for some $k \geq 2$. For any singular point $x \in C$, we have $2 \leq m_{x} \leq k$, where m_{x} denotes the multiplicity of x.

Proof

Luca F. Di Cerbo

Proof

Let $i: \bar{C} \rightarrow C$ be the normalization

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k}
$$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k} \quad \Rightarrow
$$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k} \quad \Rightarrow \quad p_{a}(C)=1+\frac{3 k+k^{2}}{2}
$$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k} \quad \Rightarrow \quad p_{a}(C)=1+\frac{3 k+k^{2}}{2}
$$

Thus for any singular point $x \in C$ we have

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k} \quad \Rightarrow \quad p_{a}(C)=1+\frac{3 k+k^{2}}{2}
$$

Thus for any singular point $x \in C$ we have

$$
1+\frac{3 k+k^{2}}{2}-\frac{m_{x}\left(m_{x}-1\right)}{2} \geq g(\bar{C})>1+k
$$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k} \quad \Rightarrow \quad p_{a}(C)=1+\frac{3 k+k^{2}}{2}
$$

Thus for any singular point $x \in C$ we have

$$
\begin{aligned}
& 1+\frac{3 k+k^{2}}{2}-\frac{m_{x}\left(m_{x}-1\right)}{2} \geq g(\bar{C})>1+k \\
& m_{x}^{2}-m_{x}-k-k^{2}<0
\end{aligned}
$$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k} \quad \Rightarrow \quad p_{a}(C)=1+\frac{3 k+k^{2}}{2}
$$

Thus for any singular point $x \in C$ we have

$$
\begin{aligned}
& 1+\frac{3 k+k^{2}}{2}-\frac{m_{x}\left(m_{x}-1\right)}{2} \geq g(\bar{C})>1+k \\
& m_{x}^{2}-m_{x}-k-k^{2}<0 \Rightarrow
\end{aligned}
$$

Let $i: \bar{C} \rightarrow C$ be the normalization $\Rightarrow g(\bar{C})=p_{a}(C)-\sum_{i} \delta_{x_{i}}$ Where the sum is over all singular points $\left\{x_{i}\right\}$, and

$$
\delta_{x}=\operatorname{dim}_{\mathbb{C}}\left(i_{*} \mathcal{O}_{\bar{C}} / \mathcal{O}_{C}\right)_{x}
$$

is the local genus drop at the point x.

$$
\text { As } C \equiv L_{k} \quad \Rightarrow \quad p_{a}(C)=1+\frac{3 k+k^{2}}{2}
$$

Thus for any singular point $x \in C$ we have

$$
\begin{aligned}
& 1+\frac{3 k+k^{2}}{2}-\frac{m_{x}\left(m_{x}-1\right)}{2} \geq g(\bar{C})>1+k \\
& m_{x}^{2}-m_{x}-k-k^{2}<0 \Rightarrow 2 \leq m_{x}<1+k
\end{aligned}
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1}
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth }
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l \mid t}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2$,

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l \mid t}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$

Concluding

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$

Concluding \Rightarrow

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$

$$
\text { Concluding } \Rightarrow \epsilon\left(L_{k}, x\right) \geq k
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \Rightarrow C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{\text { mult }_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l} t_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

where $f: B I_{x}(S) \rightarrow S$ is the blow-up at x, E exceptional divisor

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l} t_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

where $f: B I_{x}(S) \rightarrow S$ is the blow-up at x, E exceptional divisor
Thus

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l} t_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

where $f: B I_{x}(S) \rightarrow S$ is the blow-up at x, E exceptional divisor
Thus \Rightarrow

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l} t_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

where $f: B I_{x}(S) \rightarrow S$ is the blow-up at x, E exceptional divisor
Thus $\Rightarrow \lambda^{2} \leq L_{k}^{2}$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l} t_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

where $f: B I_{x}(S) \rightarrow S$ is the blow-up at x, E exceptional divisor
Thus $\Rightarrow \lambda^{2} \leq L_{k}^{2} \quad \Rightarrow$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l} t_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

where $f: B I_{x}(S) \rightarrow S$ is the blow-up at x, E exceptional divisor
Thus $\Rightarrow \lambda^{2} \leq L_{k}^{2} \Rightarrow \epsilon\left(L_{k}, x\right) \leq k$

Theorem

Let S be a fake projective plane. Given any point $x \in S$, we have $\epsilon\left(L_{k}, x\right)=\epsilon\left(L_{k}\right)=k$.

Proof.

$$
\text { If } C \equiv L_{1} \quad \Rightarrow \quad C \text { is smooth } \Rightarrow \frac{L_{k} \cdot C}{m_{l} t_{x}(C)}=k
$$

If $C \equiv L_{s}, s \geq 2, \quad \Rightarrow \quad x \in C$ with $m_{x} \geq 2 \quad \Rightarrow \quad \frac{L_{k} \cdot C}{m u l t_{x}(C)} \geq \frac{s \cdot k}{s}=k$
Concluding $\Rightarrow \epsilon\left(L_{k}, x\right) \geq k$

$$
\epsilon\left(L_{k}, x\right)=\sup \left\{\lambda>0: f^{*} L_{k}-\lambda E \text { is nef on } B I_{x}(S)\right\}
$$

where $f: B I_{x}(S) \rightarrow S$ is the blow-up at x, E exceptional divisor
Thus $\Rightarrow \lambda^{2} \leq L_{k}^{2} \quad \Rightarrow \quad \epsilon\left(L_{k}, x\right) \leq k \quad$ Done!

Conclusion

Not only S is a fake \mathbb{P}^{2}

Conclusion

Not only S is a fake \mathbb{P}^{2} But also

Conclusion

$$
\begin{gathered}
\text { Not only } S \text { is a fake } \mathbb{P}^{2} \\
\text { But also } \\
L_{k} \text { is a fake } \mathcal{O}_{\mathbb{P}^{2}}(k) \text { for any } k!
\end{gathered}
$$

Conclusion

> Not only S is a fake \mathbb{P}^{2}
> But also
> L_{k} is a fake $\mathcal{O}_{\mathbb{P}^{2}}(k)$ for any $k!$

Indeed their Seshadri Constants do Not depend on x

Conclusion

> Not only S is a fake \mathbb{P}^{2}
> But also
> L_{k} is a fake $\mathcal{O}_{\mathbb{P}^{2}}(k)$ for any $k!$

Indeed their Seshadri Constants do Not depend on x
And

Conclusion

$$
\begin{gathered}
\text { Not only } S \text { is a fake } \mathbb{P}^{2} \\
\text { But also } \\
L_{k} \text { is a fake } \mathcal{O}_{\mathbb{P}^{2}}(k) \text { for any } k!
\end{gathered}
$$

Indeed their Seshadri Constants do Not depend on x

And

$$
\epsilon\left(L_{k}\right)=\epsilon\left(\mathcal{O}_{\mathbb{P}^{2}}(k)\right)=k
$$

Also... and a Question

Fake Projective Planes are the only Surfaces of General Type

Also... and a Question

Fake Projective Planes are the only Surfaces of General Type for which we know how to compute the Seshadri Constants!

Also... and a Question

Fake Projective Planes are the only Surfaces of General Type for which we know how to compute the Seshadri Constants!

and a question after

G. Prasad, S.-K. Yeung, Arithmetic fake projective spaces and arithmetic fake Grassmannians. Amer. J. Math, 131 (2009), no. 2, 379-407.

Also... and a Question

Fake Projective Planes are the only Surfaces of General Type for which we know how to compute the Seshadri Constants!

and a question after

G. Prasad, S.-K. Yeung, Arithmetic fake projective spaces and arithmetic fake Grassmannians. Amer. J. Math, 131 (2009), no. 2, 379-407.

Question

Can we explicitly compute the Seshadri Constants of fake $\mathbb{P}_{\mathbb{C}}^{4}$'s?

Applications (joint with Di Brino)

The study of curves C inside fake projective planes S gives:

Applications (joint with Di Brino)

The study of curves C inside fake projective planes S gives:

- Results concerning the Bicanonical Map

Applications (joint with Di Brino)

The study of curves C inside fake projective planes S gives:

- Results concerning the Bicanonical Map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

Applications (joint with Di Brino)

The study of curves C inside fake projective planes S gives:

- Results concerning the Bicanonical Map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

Note that $\operatorname{dim}_{\mathbb{C}} H^{0}\left(S ; 2 K_{S}\right)=10$

Applications (joint with Di Brino)

The study of curves C inside fake projective planes S gives:

- Results concerning the Bicanonical Map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

Note that $\operatorname{dim}_{\mathbb{C}} H^{0}\left(S ; 2 K_{S}\right)=10$

- Results concerning Exceptional Collections on S

Theorem (with Di Brino)

Let S be a fake projective plane. The 2-canonical map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

is a birational morphism, and an isomorphism with its image outside a finite set of points in S. Moreover, it is an embedding on Keum's Fake Projective Planes.

Theorem (with Di Brino)

Let S be a fake projective plane. The 2-canonical map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

is a birational morphism, and an isomorphism with its image outside a finite set of points in S. Moreover, it is an embedding on Keum's Fake Projective Planes.

Remarks and Comments

Theorem (with Di Brino)

Let S be a fake projective plane. The 2-canonical map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

is a birational morphism, and an isomorphism with its image outside a finite set of points in S. Moreover, it is an embedding on Keum's Fake Projective Planes.

Remarks and Comments

- Birationality of $\varphi_{\left|2 K_{s}\right|}$ was discovered by Mendes Lopez-Pardini in (2001)

Theorem (with Di Brino)

Let S be a fake projective plane. The 2-canonical map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

is a birational morphism, and an isomorphism with its image outside a finite set of points in S. Moreover, it is an embedding on Keum's Fake Projective Planes.

Remarks and Comments

- Birationality of $\varphi_{\left|2 K_{s}\right|}$ was discovered by Mendes Lopez-Pardini in (2001)
- This Theorem has been recently improved by Catanese-Keum \& Borisov-Yeung

Theorem (with Di Brino)

Let S be a fake projective plane. The 2-canonical map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

is a birational morphism, and an isomorphism with its image outside a finite set of points in S. Moreover, it is an embedding on Keum's Fake Projective Planes.

Remarks and Comments

- Birationality of $\varphi_{\left|2 K_{s}\right|}$ was discovered by Mendes Lopez-Pardini in (2001)
- This Theorem has been recently improved by Catanese-Keum \& Borisov-Yeung
- For the latest developments

Theorem (with Di Brino)

Let S be a fake projective plane. The 2-canonical map

$$
\varphi_{\left|2 K_{S}\right|}: S \longrightarrow \mathbb{P}^{9}
$$

is a birational morphism, and an isomorphism with its image outside a finite set of points in S. Moreover, it is an embedding on Keum's Fake Projective Planes.

Remarks and Comments

- Birationality of $\varphi_{\left|2 K_{s}\right|}$ was discovered by Mendes Lopez-Pardini in (2001)
- This Theorem has been recently improved by Catanese-Keum \& Borisov-Yeung
- For the latest developments \Rightarrow

Here are the relevant papers:

Here are the relevant papers:
J. Keum, Algebraic Surfaces with Minimal Betti Numbers, Proceedings of the International Congress of Mathematicians (ICM 2018), pp. 699-718 (2019).

Here are the relevant papers:
J. Keum, Algebraic Surfaces with Minimal Betti Numbers, Proceedings of the International Congress of Mathematicians (ICM 2018), pp. 699-718 (2019).
F. Catanese, J. Keum, The Bicanonical Map of Fake Projective Planes with Automorphims, Arxiv:1801.05291v2[math.AG].

Here are the relevant papers:
J. Keum, Algebraic Surfaces with Minimal Betti Numbers, Proceedings of the International Congress of Mathematicians (ICM 2018), pp. 699-718 (2019).
F. Catanese, J. Keum, The Bicanonical Map of Fake Projective Planes with Automorphims, Arxiv:1801.05291v2[math.AG].
P. Pokora, H. Tutaj-Gasinska, On Submaximal Curves in Fake Projective Planes, Arxiv:1910.06743v1[math.AG].

Exceptional Collections

Exceptional Collections

Definition

Let S be a fake projective plane, and let L be an ample generator of $\operatorname{Pic}(S)$. Then the sequence $\left(\mathcal{O}_{S},-L,-L^{\otimes 2}\right)$ is exceptional if and only if

$$
h^{0}\left(S ; L^{\otimes 2}\right)=h^{2}(S ; L)=h^{2}\left(S ; L^{\otimes 2}\right)=0 .
$$

Exceptional Collections

Definition

Let S be a fake projective plane, and let L be an ample generator of $\operatorname{Pic}(S)$. Then the sequence $\left(\mathcal{O}_{S},-L,-L^{\otimes 2}\right)$ is exceptional if and only if

$$
h^{0}\left(S ; L^{\otimes 2}\right)=h^{2}(S ; L)=h^{2}\left(S ; L^{\otimes 2}\right)=0 .
$$

Galkin, Katzarkov, Mellit, Shinder (Adv. Math. 2015) and Keum (2013 manuscript) discovered that Keum's fake projective planes have a Standard Exceptional Collection

Exceptional Collections

Definition

Let S be a fake projective plane, and let L be an ample generator of $\operatorname{Pic}(S)$. Then the sequence $\left(\mathcal{O}_{S},-L,-L^{\otimes 2}\right)$ is exceptional if and only if

$$
h^{0}\left(S ; L^{\otimes 2}\right)=h^{2}(S ; L)=h^{2}\left(S ; L^{\otimes 2}\right)=0 .
$$

Galkin, Katzarkov, Mellit, Shinder (Adv. Math. 2015) and Keum (2013 manuscript) discovered that Keum's fake projective planes have a Standard Exceptional Collection

Take $L=\mathcal{O}_{S}(1)$

Exceptional Collections

Definition

Let S be a fake projective plane, and let L be an ample generator of $\operatorname{Pic}(S)$. Then the sequence $\left(\mathcal{O}_{S},-L,-L^{\otimes 2}\right)$ is exceptional if and only if

$$
h^{0}\left(S ; L^{\otimes 2}\right)=h^{2}(S ; L)=h^{2}\left(S ; L^{\otimes 2}\right)=0 .
$$

Galkin, Katzarkov, Mellit, Shinder (Adv. Math. 2015) and Keum (2013 manuscript) discovered that Keum's fake projective planes have a Standard Exceptional Collection

Take $L=\mathcal{O}_{S}(1)$ where

Exceptional Collections

Definition

Let S be a fake projective plane, and let L be an ample generator of $\operatorname{Pic}(S)$. Then the sequence $\left(\mathcal{O}_{S},-L,-L^{\otimes 2}\right)$ is exceptional if and only if

$$
h^{0}\left(S ; L^{\otimes 2}\right)=h^{2}(S ; L)=h^{2}\left(S ; L^{\otimes 2}\right)=0 .
$$

Galkin, Katzarkov, Mellit, Shinder (Adv. Math. 2015) and Keum (2013 manuscript) discovered that Keum's fake projective planes have a

Standard Exceptional Collection

Take $L=\mathcal{O}_{S}(1)$ where $\mathcal{O}_{S}(1)$ is the unique G_{21}-equivariant line bundle

Exceptional Collections

Definition

Let S be a fake projective plane, and let L be an ample generator of $\operatorname{Pic}(S)$. Then the sequence $\left(\mathcal{O}_{S},-L,-L^{\otimes 2}\right)$ is exceptional if and only if

$$
h^{0}\left(S ; L^{\otimes 2}\right)=h^{2}(S ; L)=h^{2}\left(S ; L^{\otimes 2}\right)=0 .
$$

Galkin, Katzarkov, Mellit, Shinder (Adv. Math. 2015) and Keum (2013 manuscript) discovered that Keum's fake projective planes have a

Standard Exceptional Collection

Take $L=\mathcal{O}_{S}(1)$ where $\mathcal{O}_{S}(1)$ is the unique G_{21}-equivariant line bundle such that $K_{S} \cong \mathcal{O}_{S}(1)^{\otimes 3}$

Theorem (with Di Brino)

The fake projective plane S with $\operatorname{Aut}(S)=G_{21}$ and $H_{1}(S ; \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})^{4}$ has a non-standard exceptional collection.

Theorem (with Di Brino)

The fake projective plane S with $\operatorname{Aut}(S)=G_{21}$ and $H_{1}(S ; \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})^{4}$ has a non-standard exceptional collection.

More precisely

Theorem (with Di Brino)

The fake projective plane S with $\operatorname{Aut}(S)=G_{21}$ and $H_{1}(S ; \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})^{4}$ has a non-standard exceptional collection.

More precisely

There exists a torsion element $T \in \operatorname{Pic}(S)$ such that

Theorem (with Di Brino)

The fake projective plane S with $\operatorname{Aut}(S)=G_{21}$ and $H_{1}(S ; \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})^{4}$ has a non-standard exceptional collection.

More precisely

There exists a torsion element $T \in \operatorname{Pic}(S)$ such that

$$
\left(\mathcal{O}_{S},-\mathcal{O}_{S}(1)-T,-\mathcal{O}_{S}(1)^{\otimes 2}\right) \text { is exceptional }
$$

Theorem (with Di Brino)

The fake projective plane S with $\operatorname{Aut}(S)=G_{21}$ and $H_{1}(S ; \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})^{4}$ has a non-standard exceptional collection.

More precisely

There exists a torsion element $T \in \operatorname{Pic}(S)$ such that

$$
\begin{gathered}
\left(\mathcal{O}_{S},-\mathcal{O}_{S}(1)-\right. \\
\text { Note that }
\end{gathered}
$$

Theorem (with Di Brino)

The fake projective plane S with $\operatorname{Aut}(S)=G_{21}$ and $H_{1}(S ; \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})^{4}$ has a non-standard exceptional collection.

More precisely

There exists a torsion element $T \in \operatorname{Pic}(S)$ such that

$$
\begin{gathered}
\left(\mathcal{O}_{S},-\mathcal{O}_{S}(1)-\right. \\
\text { Note that }
\end{gathered}
$$

$$
\left(\mathcal{O}_{S}(1)+T\right)^{\otimes 2} \cong \mathcal{O}_{S}(1)^{\otimes 2}
$$

Theorem (with Di Brino)

The fake projective plane S with $\operatorname{Aut}(S)=G_{21}$ and $H_{1}(S ; \mathbb{Z})=(\mathbb{Z} / 2 \mathbb{Z})^{4}$ has a non-standard exceptional collection.

More precisely

There exists a torsion element $T \in \operatorname{Pic}(S)$ such that

$$
\begin{gathered}
\left(\mathcal{O}_{S},-\mathcal{O}_{S}(1)-\right. \\
\\
\text { Note that }
\end{gathered}
$$

$$
\left(\mathcal{O}_{S}(1)+T\right)^{\otimes 2} \cong \mathcal{O}_{S}(1)^{\otimes 2}
$$

for any torsion line bundle T !

Once again for the latest developments

Once again for the latest developments

I refer all of you to Keum's ICM 2018 lecture

Thanks for Having Me! Florida is Inspiring

Thanks for Having Me! Florida is Inspiring

Thanks for Having Me! Florida is Inspiring

