Extended Graph Manifolds, and Einstein Metrics II

Luca F. Di Cerbo

UF| ${ }^{\text {UNLVERSITV }}$

Topology \& Dynamics Seminar, Mathematics Department, University of Florida, January 25, 2022

Discussion will be based on results from

Discussion will be based on results from

Extended Graph 4-Manifolds, and Einstein Metrics

Discussion will be based on results from

Extended Graph 4-Manifolds, and Einstein Metrics

e-print arXiv:2106.13279v3 [math.DG]

Discussion will be based on results from

Extended Graph 4-Manifolds, and Einstein Metrics

> e-print arXiv:2106.13279v3 [math.DG]
to appear in Annales Mathématiques du Quebéc

The Goal(s) of this Lecture

The Goal(s) of this Lecture

- Fill in for Alexander. Hopefully you don't miss him too much!

The Goal(s) of this Lecture

- Fill in for Alexander. Hopefully you don't miss him too much!
- Prove a Non-Existence Theorem for Einstein metrics on Extended Graph 4-Manifolds;

The Goal(s) of this Lecture

- Fill in for Alexander. Hopefully you don't miss him too much!
- Prove a Non-Existence Theorem for Einstein metrics on Extended Graph 4-Manifolds;
- Inspire you to find this Stuff Interesting, especially if I failed at this during Part I of this series of seminars.

Introduction: Metrics, Distance, and Geodesics

The objects of this talk are Riemannian Manifolds equipped with special Riemannian metrics known as Einstein Metrics.

Introduction: Metrics, Distance, and Geodesics

The objects of this talk are Riemannian Manifolds equipped with special Riemannian metrics known as Einstein Metrics.

Definition

Let M^{n} be a smooth orientable n-manifold (e.g., a smooth embedded surface in \mathbb{R}^{3}). A Riemannian metric g on M is choice of a positive definite inner product on each tangent space $T_{p} M$ varying smoothly with $p \in M$.

Introduction: Metrics, Distance, and Geodesics

The objects of this talk are Riemannian Manifolds equipped with special Riemannian metrics known as Einstein Metrics.

Definition

Let M^{n} be a smooth orientable n-manifold (e.g., a smooth embedded surface in \mathbb{R}^{3}). A Riemannian metric g on M is choice of a positive definite inner product on each tangent space $T_{p} M$ varying smoothly with $p \in M$.

Given a smooth path in a Riemannian manifold (M, g)

$$
\alpha:[a, b] \rightarrow M,
$$

we define its length by setting

$$
L(\alpha)=\int_{a}^{b} g\left(\alpha^{\prime}(t), \alpha^{\prime}(t)\right)^{1 / 2} d t, \quad \alpha^{\prime}(t) \in T_{\alpha(t)} M
$$

We then define the distance between $p_{1}, p_{2} \in M$, denoted by $d\left(p_{1}, p_{2}\right)$, to be the infimun for L over all smooth paths joining p_{1} and p_{2}.

Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Curves that locally minimize distance are called Geodesics.

Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Curves that locally minimize distance are called Geodesics.

Following the geodesics starting at a point $p \in M$, we obtain the so-called exponential map:

$$
\exp _{p}: T_{p} M^{n} \rightarrow M^{n}, \quad T_{p} M^{n} \simeq \mathbb{R}^{n}
$$

Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Curves that locally minimize distance are called Geodesics.

Following the geodesics starting at a point $p \in M$, we obtain the so-called exponential map:

$$
\exp _{p}: T_{p} M^{n} \rightarrow M^{n}, \quad T_{p} M^{n} \simeq \mathbb{R}^{n}
$$

The exponential map is a local diffeomorphism around $0 \in T_{p} M^{n}$.

Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Curves that locally minimize distance are called Geodesics.

Following the geodesics starting at a point $p \in M$, we obtain the so-called exponential map:

$$
\exp _{p}: T_{p} M^{n} \rightarrow M^{n}, \quad T_{p} M^{n} \simeq \mathbb{R}^{n}
$$

The exponential map is a local diffeomorphism around $0 \in T_{p} M^{n}$.

It defines local coordinates around $p \in M$ known as Geodesic Normal Coordinates.

Pictorially, we have:

Pictorially, we have:

Volumes, Ricci Curvature, and Einstein Metrics

The expansion of the Volume Element in Geodesic Normal Coordinates and is given by:

$$
d \mu_{g}=\left(1-\frac{1}{6} R i c_{i j} x^{i} x^{j}+O\left(|x|^{3}\right)\right) d x^{1} \wedge \ldots \wedge d x^{n}
$$

Volumes, Ricci Curvature, and Einstein Metrics

The expansion of the Volume Element in Geodesic Normal Coordinates and is given by:

$$
d \mu_{g}=\left(1-\frac{1}{6} R i c_{i j} x^{i} x^{j}+O\left(|x|^{3}\right)\right) d x^{1} \wedge \ldots \wedge d x^{n}
$$

This defines a symmetric two tensor (a symmetric bilinear form on each tangent space $T_{p} M$)

$$
R i c_{g}=R i c_{i j} d x^{i} \otimes d x^{j}
$$

know as the Ricci Tensor.

Volumes, Ricci Curvature, and Einstein Metrics

The expansion of the Volume Element in Geodesic Normal Coordinates and is given by:

$$
d \mu_{g}=\left(1-\frac{1}{6} R i c_{i j} x^{i} x^{j}+O\left(|x|^{3}\right)\right) d x^{1} \wedge \ldots \wedge d x^{n}
$$

This defines a symmetric two tensor (a symmetric bilinear form on each tangent space $T_{p} M$)

$$
R i c_{g}=R i c_{i j} d x^{i} \otimes d x^{j}
$$

know as the Ricci Tensor.

Definition

A Riemannian metric is said to be Einstein if its Ricci Tensor satisfies

$$
R i c_{g}=\lambda g
$$

where the constant $\lambda \in \mathbb{R}$ is known as the cosmological or Einstein constant.

Here is a famous picture of Einstein looking for such metrics:

Here is a famous picture of Einstein looking for such metrics:

Here is a famous picture of Einstein looking for such metrics:

Apparently, here he is interested in the case $\lambda=0$!

Here is a famous picture of Einstein looking for such metrics:

Apparently, here he is interested in the case $\lambda=0$! And of course, he was exploring the Lorentzian case...

Classical Examples of Einstein Metrics

Einstein metrics always exist in dimension $n=2$. Indeed, we have

$$
R i c_{g}=K g
$$

where K is the Gauss curvature function, and by the uniformization theorem we can always find metrics with constant Gauss curvature!

Classical Examples of Einstein Metrics

Einstein metrics always exist in dimension $n=2$. Indeed, we have

$$
R i c_{g}=K g
$$

where K is the Gauss curvature function, and by the uniformization theorem we can always find metrics with constant Gauss curvature!

More precisely, if $\mathbf{G} \geq 0$ is the genus of a orientable closed surface we then have

Classical Examples of Einstein Metrics

Einstein metrics always exist in dimension $n=2$. Indeed, we have

$$
R i c_{g}=K g
$$

where K is the Gauss curvature function, and by the uniformization theorem we can always find metrics with constant Gauss curvature!

More precisely, if $\mathbf{G} \geq 0$ is the genus of a orientable closed surface we then have

$$
K=\left\{\begin{array}{rl}
1 \text { spherical } & \Longleftrightarrow \mathbf{G}=0, \\
0 & \text { flat } \\
-1 & \text { hyperbolic }
\end{array} \Longleftrightarrow \mathbf{G}=1, ~(\mathbf{G} \geq 2 . ~ \$\right.
$$

Classical Examples of Einstein Metrics

Einstein metrics always exist in dimension $n=2$. Indeed, we have

$$
R i c_{g}=K g
$$

where K is the Gauss curvature function, and by the uniformization theorem we can always find metrics with constant Gauss curvature!

More precisely, if $\mathbf{G} \geq 0$ is the genus of a orientable closed surface we then have

$$
K=\left\{\begin{aligned}
& 1 \text { spherical } \\
& 0 \Longleftrightarrow \mathbf{G}=0, \\
&-1 \text { hypperbolic } \\
& \Longleftrightarrow \mathbf{G}=1, \\
& \mathbf{G} \geq 2 .
\end{aligned}\right.
$$

Similarly, Riemannian manifolds $\left(M^{n}, g\right)$ with constant sectional curvature (real space forms) are example of Einstein manifolds

Similarly, Riemannian manifolds $\left(M^{n}, g\right)$ with constant sectional curvature (real space forms) are example of Einstein manifolds

$$
\text { Sec }=\left\{\begin{array}{rl}
1 & \text { Universal cover is } \mathbb{S}^{n},
\end{array} \quad \Longrightarrow \operatorname{Ric}_{g}=(n-1) g ; ~\left\{\begin{array}{rlc}
\\
0 & \text { Universal cover is } \mathbb{R}^{n}, & \Longrightarrow \operatorname{Ric}_{g}=0 ; \\
-1 & \text { Universal cover is } \mathbb{H}^{n}, & \Longrightarrow \operatorname{Ric}_{g}=-(n-1) g .
\end{array}\right.\right.
$$

Similarly, Riemannian manifolds $\left(M^{n}, g\right)$ with constant sectional curvature (real space forms) are example of Einstein manifolds

Constant curvature examples are then plentiful and very interesting from a global point of view especially in the hyperbolic case, e.g., deep connections with group theory, lattices in $\mathrm{PO}(n, 1)$, and so on.

Similarly, Riemannian manifolds $\left(M^{n}, g\right)$ with constant sectional curvature (real space forms) are example of Einstein manifolds

Constant curvature examples are then plentiful and very interesting from a global point of view especially in the hyperbolic case, e.g., deep connections with group theory, lattices in $\mathrm{PO}(n, 1)$, and so on.

With that said, these examples of Einstein manifolds are all locally symmetric and as such a bit boring from a local geometry point of view! Indeed, around each point they look exactly the same...

Do we have examples of Einstein metrics which are NOT locally symmetric?

Do we have examples of Einstein metrics which are NOT locally symmetric?

I will try to answer this question with a picture:

Do we have examples of Einstein metrics which are NOT locally symmetric?

I will try to answer this question with a picture:

Do we have examples of Einstein metrics which are NOT locally symmetric?

I will try to answer this question with a picture:

S.-T. Yau (1949-), Fields Medal in 1982.

Theorem (Yau)

- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda=0$ (Ricci-flat) if and only if $c_{1}(M)=0 \quad\left(c_{1}(M) \in H_{d R}^{2}(M)\right)$;
- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda<0$ (negative Ricci curvature) if and only if $c_{1}(M)<0$.

Theorem (Yau)

- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda=0$ (Ricci-flat) if and only if $c_{1}(M)=0 \quad\left(c_{1}(M) \in H_{d R}^{2}(M)\right)$;
- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda<0$ (negative Ricci curvature) if and only if $c_{1}(M)<0$.

Recall that

Theorem (Yau)

- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda=0$ (Ricci-flat) if and only if $c_{1}(M)=0 \quad\left(c_{1}(M) \in H_{d R}^{2}(M)\right)$;
- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda<0$ (negative Ricci curvature) if and only if $c_{1}(M)<0$.

Recall that

A Kähler manifold is an even dimensional real manifold which can be covered by holomorphic charts, equipped with a metric ω which can be locally written as $\omega=\sqrt{-1} \partial \bar{\partial} \phi, \quad \phi: U \rightarrow \mathbb{R}$.

Theorem (Yau)

- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda=0$ (Ricci-flat) if and only if $c_{1}(M)=0 \quad\left(c_{1}(M) \in H_{d R}^{2}(M)\right)$;
- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda<0$ (negative Ricci curvature) if and only if $c_{1}(M)<0$.

Recall that

A Kähler manifold is an even dimensional real manifold which can be covered by holomorphic charts, equipped with a metric ω which can be locally written as $\omega=\sqrt{-1} \partial \bar{\partial} \phi, \quad \phi: U \rightarrow \mathbb{R}$.

Reference (Cited 981 times in Mathscinet! 1/25/2022)

Theorem (Yau)

- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda=0$ (Ricci-flat) if and only if $c_{1}(M)=0 \quad\left(c_{1}(M) \in H_{d R}^{2}(M)\right)$;
- A compact Kähler manifold M admits a Kähler-Einstein metric with $\lambda<0$ (negative Ricci curvature) if and only if $c_{1}(M)<0$.

Recall that

A Kähler manifold is an even dimensional real manifold which can be covered by holomorphic charts, equipped with a metric ω which can be locally written as $\omega=\sqrt{-1} \partial \bar{\partial} \phi, \quad \phi: U \rightarrow \mathbb{R}$.

Reference (Cited 981 times in Mathscinet! 1/25/2022)

S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation. I., Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411.

Examples in Dimension $\mathrm{n}=4$

- K3 Surfaces. Examples of such surfaces can be concretely constructed by looking at degree four hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{3}$. For example

$$
M:=\left\{z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)=0
$$

By Yau they support Ricci-flat Kähler metrics;

Examples in Dimension $\mathrm{n}=4$

- K3 Surfaces. Examples of such surfaces can be concretely constructed by looking at degree four hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{3}$. For example

$$
M:=\left\{z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)=0
$$

By Yau they support Ricci-flat Kähler metrics;

- Degree $d>4$ Hypersurfaces in Complex Projective 3-Space. For example

$$
M:=\left\{z_{0}^{d}+z_{1}^{d}+z_{2}^{d}+z_{3}^{d}=0, d>4,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)<0 .
$$

By Yau they support Kähler-Einstein metrics with $\lambda<0$;

Examples in Dimension $\mathrm{n}=4$

- K3 Surfaces. Examples of such surfaces can be concretely constructed by looking at degree four hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{3}$. For example

$$
M:=\left\{z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)=0
$$

By Yau they support Ricci-flat Kähler metrics;

- Degree $d>4$ Hypersurfaces in Complex Projective 3-Space. For example

$$
M:=\left\{z_{0}^{d}+z_{1}^{d}+z_{2}^{d}+z_{3}^{d}=0, d>4,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)<0 .
$$

By Yau they support Kähler-Einstein metrics with $\lambda<0$;

- Anderson's Dehn Filling Examples ($n \geq 4, \lambda<0$);

Examples in Dimension $\mathrm{n}=4$

- K3 Surfaces. Examples of such surfaces can be concretely constructed by looking at degree four hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{3}$. For example

$$
M:=\left\{z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)=0
$$

By Yau they support Ricci-flat Kähler metrics;

- Degree $d>4$ Hypersurfaces in Complex Projective 3-Space. For example

$$
M:=\left\{z_{0}^{d}+z_{1}^{d}+z_{2}^{d}+z_{3}^{d}=0, d>4,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)<0
$$

By Yau they support Kähler-Einstein metrics with $\lambda<0$;

- Anderson's Dehn Filling Examples ($n \geq 4, \lambda<0$);
- Fine-Premoselli's Branched Covering Examples ($n=4, \lambda<0$, Sec <0);

Examples in Dimension $\mathrm{n}=4$

- K3 Surfaces. Examples of such surfaces can be concretely constructed by looking at degree four hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{3}$. For example

$$
M:=\left\{z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)=0
$$

By Yau they support Ricci-flat Kähler metrics;

- Degree $d>4$ Hypersurfaces in Complex Projective 3-Space. For example

$$
M:=\left\{z_{0}^{d}+z_{1}^{d}+z_{2}^{d}+z_{3}^{d}=0, d>4,[z] \in \mathbb{P}_{\mathbb{C}}^{3}\right\} \quad \Rightarrow \quad c_{1}(M)<0
$$

By Yau they support Kähler-Einstein metrics with $\lambda<0$;

- Anderson's Dehn Filling Examples ($n \geq 4, \lambda<0$);
- Fine-Premoselli's Branched Covering Examples ($n=4, \lambda<0$, Sec <0);
- Hopefully many more to come in my life time!!

Here are the relevant papers for the most recent classes of examples:

Here are the relevant papers for the most recent classes of examples:
M. T. Anderson, Dehn filling and Einstein metrics in higher dimensions, J. Differential Geom. 73 (2006), no. 2, 219-261.
R. Bamler, Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 3, 887-909.
J. Fine, B. Premoselli, Examples of compact Einstein four-manifolds with negative curvature, J. Amer. Math. Soc. 33 (2020), no. 4, 991-1038.

Obstructions to the Existence of Einstein Metrics

The most famous obstruction is due to:

Obstructions to the Existence of Einstein Metrics

The most famous obstruction is due to:

Obstructions to the Existence of Einstein Metrics

The most famous obstruction is due to:

N. Hitchin (1946 -), Shaw Prize in 2016 *.

Obstructions to the Existence of Einstein Metrics

The most famous obstruction is due to:

N. Hitchin (1946 -), Shaw Prize in 2016 *.

* Picture courtesy of the Archives of the Mathematisches Forschungsinstitut Oberwolfach

Hitchin's obstruction is expressed in terms of the Euler characteristic and Signature of a closed orientable 4-manifold.

Hitchin's obstruction is expressed in terms of the Euler characteristic and Signature of a closed orientable 4-manifold.

Recall that the Euler characteristic is given by the alternating sum of Betti numbers

$$
\chi\left(M^{4}\right)=\sum_{i=0}^{4}(-1)^{i} b_{i}(M), \quad b_{i}(M)=\operatorname{dim}_{\mathbb{Z}} H_{i}(M ; \mathbb{Z})
$$

Hitchin's obstruction is expressed in terms of the Euler characteristic and Signature of a closed orientable 4-manifold.

Recall that the Euler characteristic is given by the alternating sum of Betti numbers

$$
\chi\left(M^{4}\right)=\sum_{i=0}^{4}(-1)^{i} b_{i}(M), \quad b_{i}(M)=\operatorname{dim}_{\mathbb{Z}} H_{i}(M ; \mathbb{Z})
$$

Similarly, recall that the Signature $\sigma\left(M^{4}\right)$ of closed orientable 4-manifold is given as the signature of the natural bilinear form

$$
Q_{M}: H_{2}(M ; \mathbb{Z}) \times H_{2}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}
$$

defined by counting intersections with signs.

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\quad \Rightarrow$

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\quad \Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|^{2}}{2} d \mu_{g}$

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\quad \Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|}{2} d \mu_{g}$
By the Einstein condition $R i c_{g}=\lambda g$

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\quad \Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|^{2}}{2} d \mu_{g}$
By the Einstein condition Ric $_{g}=\lambda g \quad \Rightarrow$

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\quad \Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|^{2}}{2} d \mu_{g}$
By the Einstein condition $R i c_{g}=\lambda g \quad \Rightarrow \quad R i c=0$

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|}{2} d \mu_{g}$
By the Einstein condition $\mathrm{Ric}_{g}=\lambda g \quad \Rightarrow \quad R i c=0$ By Hirzebruch

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|}{2} d \mu_{g}$
By the Einstein condition $\mathrm{Ric}_{g}=\lambda g \quad \Rightarrow \quad R i c=0$
By Hirzebruch \Rightarrow

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\quad \Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|^{2}}{2} d \mu_{g}$
By the Einstein condition $\mathrm{Ric}_{g}=\lambda g \quad \Rightarrow \quad$ Ric $=0$
By Hirzebruch $\Rightarrow \sigma(M)=\frac{1}{12 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}-\left|W^{-}\right|^{2} d \mu_{g}$

Theorem (Hitchin, 1974)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ and Euler characteristic χ. Then

$$
\chi(M) \geq \frac{3}{2}|\sigma(M)|
$$

Furthermore, if equality occurs $\pm M$ is either flat or its universal covering is a K3 surface.

Proof.

By Chern $\quad \Rightarrow \chi(M)=\frac{1}{8 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}+\left|W^{-}\right|^{2}+\frac{s^{2}}{24}-\frac{|R i c|^{2}}{2} d \mu_{g}$
By the Einstein condition $\mathrm{Ric}_{g}=\lambda g \quad \Rightarrow \quad$ Ric $=0$
By Hirzebruch $\Rightarrow \sigma(M)=\frac{1}{12 \pi^{2}} \int_{M}\left|W^{+}\right|^{2}-\left|W^{-}\right|^{2} d \mu_{g}$
Combining these identities we obtain the desired inequality!

Many 4-Manifolds do NOT support Einstein Metrics!

Many 4-Manifolds do NOT support Einstein Metrics!

- $S^{1} \times S^{3}$ (M. Berger). Notice that

$$
\chi\left(S^{1} \times S^{3}\right)=\sigma\left(S^{1} \times S^{3}\right)=0
$$

but $S^{1} \times S^{3}$ is not flat! Indeed, its universal cover is $\mathbb{R} \times S^{3}$.

Many 4-Manifolds do NOT support Einstein Metrics!

- $S^{1} \times S^{3}$ (M. Berger). Notice that

$$
\chi\left(S^{1} \times S^{3}\right)=\sigma\left(S^{1} \times S^{3}\right)=0
$$

but $S^{1} \times S^{3}$ is not flat! Indeed, its universal cover is $\mathbb{R} \times S^{3}$.

- Connected sum of two 4-dimensional tori : $T^{4} \# T^{4}$ (M. Berger). Notice that $\chi\left(T^{4}\right)=0$, so that

$$
\chi\left(T^{4} \# T^{4}\right)=-2<0
$$

Many 4-Manifolds do NOT support Einstein Metrics!

- $S^{1} \times S^{3}$ (M. Berger). Notice that

$$
\chi\left(S^{1} \times S^{3}\right)=\sigma\left(S^{1} \times S^{3}\right)=0
$$

but $S^{1} \times S^{3}$ is not flat! Indeed, its universal cover is $\mathbb{R} \times S^{3}$.

- Connected sum of two 4-dimensional tori : $T^{4} \# T^{4}$ (M. Berger). Notice that $\chi\left(T^{4}\right)=0$, so that

$$
\chi\left(T^{4} \# T^{4}\right)=-2<0 \Rightarrow \text { No Einstein Metrics! }
$$

Many 4-Manifolds do NOT support Einstein Metrics!

- $S^{1} \times S^{3}$ (M. Berger). Notice that

$$
\chi\left(S^{1} \times S^{3}\right)=\sigma\left(S^{1} \times S^{3}\right)=0
$$

but $S^{1} \times S^{3}$ is not flat! Indeed, its universal cover is $\mathbb{R} \times S^{3}$.

- Connected sum of two 4-dimensional tori : $T^{4} \# T^{4}$ (M. Berger). Notice that $\chi\left(T^{4}\right)=0$, so that

$$
\chi\left(T^{4} \# T^{4}\right)=-2<0 \Rightarrow \text { No Einstein Metrics! }
$$

- Blow ups of 4-dimensional tori : $T^{4} \# \overline{\mathbb{P}_{\mathbb{C}}^{2}} \# \ldots \# \overline{\mathbb{P}_{\mathbb{C}}^{2}}$ (N. Hitchin) Notice that in this case

$$
\chi=|\sigma| \Rightarrow \text { No Einstein Metrics! }
$$

Many 4-Manifolds do NOT support Einstein Metrics!

- $S^{1} \times S^{3}$ (M. Berger). Notice that

$$
\chi\left(S^{1} \times S^{3}\right)=\sigma\left(S^{1} \times S^{3}\right)=0
$$

but $S^{1} \times S^{3}$ is not flat! Indeed, its universal cover is $\mathbb{R} \times S^{3}$.

- Connected sum of two 4-dimensional tori : $T^{4} \# T^{4}$ (M. Berger). Notice that $\chi\left(T^{4}\right)=0$, so that

$$
\chi\left(T^{4} \# T^{4}\right)=-2<0 \Rightarrow \text { No Einstein Metrics! }
$$

- Blow ups of 4-dimensional tori : $T^{4} \# \overline{\mathbb{P}_{\mathbb{C}}^{2}} \# \ldots \# \overline{\mathbb{P}_{\mathbb{C}}^{2}}$ (N. Hitchin) Notice that in this case

$$
\chi=|\sigma| \Rightarrow \text { No Einstein Metrics! }
$$

- Many more...

Main Result, Conclusions, and Open Problems

The Main Result I want to present is

Main Result, Conclusions, and Open Problems

The Main Result I want to present is
A Non-Existence Theorem for Einstein Metrics

Main Result, Conclusions, and Open Problems

The Main Result I want to present is
A Non-Existence Theorem for Einstein Metrics
On a Large Class of 4-Manifolds

Main Result, Conclusions, and Open Problems

The Main Result I want to present is
A Non-Existence Theorem for Einstein Metrics
On a Large Class of 4-Manifolds
That satisfies the Hitchin-Thorpe Inequality

Main Result, Conclusions, and Open Problems

The Main Result I want to present is
A Non-Existence Theorem for Einstein Metrics
On a Large Class of 4-Manifolds
That satisfies the Hitchin-Thorpe Inequality
And

Main Result, Conclusions, and Open Problems

The Main Result I want to present is
A Non-Existence Theorem for Einstein Metrics
On a Large Class of 4-Manifolds
That satisfies the Hitchin-Thorpe Inequality

And

Generalizes the Class of Geometric Aspherical 3-Manifolds

Main Result, Conclusions, and Open Problems

The Main Result I want to present is
A Non-Existence Theorem for Einstein Metrics
On a Large Class of 4-Manifolds
That satisfies the Hitchin-Thorpe Inequality

And

Generalizes the Class of Geometric Aspherical 3-Manifolds
To

Main Result, Conclusions, and Open Problems

The Main Result I want to present is

A Non-Existence Theorem for Einstein Metrics

On a Large Class of 4-Manifolds
That satisfies the Hitchin-Thorpe Inequality

And

Generalizes the Class of Geometric Aspherical 3-Manifolds

To
Dimension $n=4$

Main Result, Conclusions, and Open Problems

The Main Result I want to present is A Non-Existence Theorem for Einstein Metrics On a Large Class of 4-Manifolds

That satisfies the Hitchin-Thorpe Inequality

And

Generalizes the Class of Geometric Aspherical 3-Manifolds

To
Dimension $n=4$

Known As

Main Result, Conclusions, and Open Problems

The Main Result I want to present is A Non-Existence Theorem for Einstein Metrics On a Large Class of 4-Manifolds

That satisfies the Hitchin-Thorpe Inequality

And

Generalizes the Class of Geometric Aspherical 3-Manifolds
To
Dimension $n=4$
Known As
Extended Graph 4-Manifolds

Definition: Extended Graph 4-Manifolds

Definition: Extended Graph 4-Manifolds

- Extended Graph n-manifolds were introduced by Frigerio-Lafont-Sisto: R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of High Dimensional Graph Manifolds, Astérisque Volume 372, 2015.
- Extended Graph n-manifolds were introduced by Frigerio-Lafont-Sisto: R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of High Dimensional Graph Manifolds, Astérisque Volume 372, 2015.

Extended Graph n-manifolds are manufactured out of finite volume real-hyperbolic $\Gamma \backslash \mathbb{H}_{\mathbb{R}}^{n}$ with torus cusps (pure pieces) and

- Extended Graph n-manifolds were introduced by Frigerio-Lafont-Sisto: R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of High Dimensional Graph Manifolds, Astérisque Volume 372, 2015.

Extended Graph n-manifolds are manufactured out of finite volume real-hyperbolic $\Gamma \backslash \mathbb{H}_{\mathbb{R}}^{n}$ with torus cusps (pure pieces) and product pieces modeled on $\Gamma^{\prime} \backslash \mathbb{H}_{\mathbb{R}}^{n-k} \times T^{k}$, where T^{k} is a k-dimensional torus

- Extended Graph n-manifolds were introduced by Frigerio-Lafont-Sisto: R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of High Dimensional Graph Manifolds, Astérisque Volume 372, 2015.

Extended Graph n-manifolds are manufactured out of finite volume real-hyperbolic $\Gamma \backslash \mathbb{H}_{\mathbb{R}}^{n}$ with torus cusps (pure pieces) and product pieces modeled on $\Gamma^{\prime} \backslash \mathbb{H}_{\mathbb{R}}^{n-k} \times T^{k}$, where T^{k} is a k-dimensional torus
glued together along their tori boundaries via affine diffeomorphisms.

- Extended Graph n-manifolds were introduced by Frigerio-Lafont-Sisto: R. Frigerio, J.-F. Lafont, A. Sisto, Rigidity of High Dimensional Graph Manifolds, Astérisque Volume 372, 2015.

Extended Graph n-manifolds are manufactured out of finite volume real-hyperbolic $\Gamma \backslash \mathbb{H}_{\mathbb{R}}^{n}$ with torus cusps (pure pieces) and
product pieces modeled on $\Gamma^{\prime} \backslash \mathbb{H}_{\mathbb{R}}^{n-k} \times T^{k}$, where T^{k} is a k-dimensional torus
glued together along their tori boundaries via affine diffeomorphisms.
Notice we always have more than one piece!

Non-Existence Theorem

Non-Existence Theorem

Theorem (DC, 2021)

Closed Extended graph 4-manifolds do not support Einstein metrics.

Non-Existence Theorem

Theorem (DC, 2021)

Closed Extended graph 4-manifolds do not support Einstein metrics.

Remarks and Comments

Non-Existence Theorem

Theorem (DC, 2021)

Closed Extended graph 4-manifolds do not support Einstein metrics.

Remarks and Comments

- Notice that Closed Extended graph 3-manifolds do NOT support Einstein metrics

Non-Existence Theorem

Theorem (DC, 2021)

Closed Extended graph 4-manifolds do not support Einstein metrics.

Remarks and Comments

- Notice that Closed Extended graph 3-manifolds do NOT support Einstein metrics
- Indeed, Ricg $_{g}=\lambda g$ implies constant sectional curvature in dimension $n=3$!

Non-Existence Theorem

Theorem (DC, 2021)

Closed Extended graph 4-manifolds do not support Einstein metrics.

Remarks and Comments

- Notice that Closed Extended graph 3-manifolds do NOT support Einstein metrics
- Indeed, $\operatorname{Ric}_{g}=\lambda g$ implies constant sectional curvature in dimension $n=3$!
- This theorem then shows that graph-like manifolds carry over their aversion to Einstein metrics from dimension three to four.

Question

Luca F. Di Cerbo

Question

Question

Do extended graph n-manifolds with $n \geq 5$ support Einstein metrics?

Remarks and Comments

Question

Question

Do extended graph n-manifolds with $n \geq 5$ support Einstein metrics?

Remarks and Comments

- The study of Einstein metrics on manifolds of dimension $n \geq 5$ remains rather obscure when compared to dimension $n=4$.

Question

Question

Do extended graph n-manifolds with $n \geq 5$ support Einstein metrics?

Remarks and Comments

- The study of Einstein metrics on manifolds of dimension $n \geq 5$ remains rather obscure when compared to dimension $n=4$.
- In fact, no uniqueness or non-existence results are currently known in higher dimensions!

Question

Question

Do extended graph n-manifolds with $n \geq 5$ support Einstein metrics?

Remarks and Comments

- The study of Einstein metrics on manifolds of dimension $n \geq 5$ remains rather obscure when compared to dimension $n=4$.
- In fact, no uniqueness or non-existence results are currently known in higher dimensions!
- Maybe someone in the audience, perhaps a student, will take on the challenge!

Sketch of the Proof

Sketch of the Proof

The Proof can be roughly divided into Three Lemmas

Sketch of the Proof

The Proof can be roughly divided into Three Lemmas

Lemma (Improved Hithin-Thorpe Inequality due to LeBrun, 1999)

Let (M, g) be a closed orientable Einstein 4-manifold with signature σ, Euler characteristic χ, and $\lambda<0$. Then

$$
2 \chi(M)-3|\sigma(M)| \geq \frac{3}{2 \pi^{2}} \operatorname{Vol}_{R i c}(M)
$$

where the minimal Ricci volume $\operatorname{Vol}_{\text {Ric }}(M)$ is defined as

$$
\operatorname{Vol}_{R i c}(M):=\inf _{g}\left\{\operatorname{Vol}_{g}(M) \quad R i c_{g} \geq-3 g\right\} .
$$

Moreover, equality occurs if and only if g is half-conformally flat and it realizes the minimal Ricci volume (up to scaling). Finally, if $\sigma(M)=0$ and the equality is achieved, then M is real-hyperbolic.

Luca F. Di Cerbo

Extended Graph Manifolds, and Einstein Metrics II
$25 / 28$

Lemma

Let M be an extended graph 4-manifold without pure pieces. We have $\chi(M)=\sigma(M)=0$. If M has $k \geq 1$ pure real-hyperbolic pieces say $\left(V_{i}:=\Gamma_{i} \backslash \mathbb{H}_{\mathbb{R}}^{4}, g_{-1}\right)_{i=1}^{k}$, we then have

$$
\chi(M)=\sum_{i=1}^{k} \chi\left(V_{i}\right)>0, \quad \sigma(M)=0
$$

Lemma

Let M be an extended graph 4-manifold without pure pieces. We have $\chi(M)=\sigma(M)=0$. If M has $k \geq 1$ pure real-hyperbolic pieces say $\left(V_{i}:=\Gamma_{i} \backslash \mathbb{H}_{\mathbb{R}}^{4}, g_{-1}\right)_{i=1}^{k}$, we then have

$$
\chi(M)=\sum_{i=1}^{k} \chi\left(V_{i}\right)>0, \quad \sigma(M)=0
$$

and finally

Lemma

Let M be an extended graph 4-manifold without pure pieces. We have $\chi(M)=\sigma(M)=0$. If M has $k \geq 1$ pure real-hyperbolic pieces say $\left(V_{i}:=\Gamma_{i} \backslash \mathbb{H}_{\mathbb{R}}^{4}, g_{-1}\right)_{i=1}^{k}$, we then have

$$
\chi(M)=\sum_{i=1}^{k} \chi\left(V_{i}\right)>0, \quad \sigma(M)=0
$$

and finally

Lemma (Connell-Suaréz-Serrato, 2019)

Let M be an extended graph 4-manifold with $k \geq 1$ pure real-hyperbolic pieces say $\left(V_{i}, g_{-1}\right)_{i=1}^{k}$, we then have

$$
\operatorname{Vol}_{R i c}(M)=\sum_{i=1}^{k} \operatorname{Vol}_{g_{-1}}\left(V_{i}\right)=\frac{4 \pi^{2}}{3} \sum_{i=1}^{k} \chi\left(V_{i}\right)=\frac{4 \pi^{2}}{3} \chi(M)
$$

Concluding, we have two distinct cases:

Concluding, we have two distinct cases:

Concluding, we have two distinct cases:

- If M has no pure real-hyperbolic pieces, then M saturates the Hitchin-Thorpe Inequality.

Concluding, we have two distinct cases:

- If M has no pure real-hyperbolic pieces, then M saturates the Hitchin-Thorpe Inequality. The growth of $\pi_{1}(M)$ now provides an obstruction!

Concluding, we have two distinct cases:

- If M has no pure real-hyperbolic pieces, then M saturates the Hitchin-Thorpe Inequality. The growth of $\pi_{1}(M)$ now provides an obstruction!
- $\operatorname{Vol}_{\text {Ric }}(M)>0$.

Concluding, we have two distinct cases:

- If M has no pure real-hyperbolic pieces, then M saturates the Hitchin-Thorpe Inequality. The growth of $\pi_{1}(M)$ now provides an obstruction!
- $\operatorname{Vol}_{\text {Ric }}(M)>0$. In this case, M has at least one pure real-hyperbolic piece and M saturates the improved Hitchin-Thorpe Inequality.

Concluding, we have two distinct cases:

- If M has no pure real-hyperbolic pieces, then M saturates the Hitchin-Thorpe Inequality. The growth of $\pi_{1}(M)$ now provides an obstruction!
- $\operatorname{Vol}_{\text {Ric }}(M)>0$. In this case, M has at least one pure real-hyperbolic piece and M saturates the improved Hitchin-Thorpe Inequality. Thus, the Einstein metric on M has to be real-hyperbolic!

Concluding, we have two distinct cases:

- If M has no pure real-hyperbolic pieces, then M saturates the Hitchin-Thorpe Inequality. The growth of $\pi_{1}(M)$ now provides an obstruction!
- $\operatorname{Vol}_{\text {Ric }}(M)>0$. In this case, M has at least one pure real-hyperbolic piece and M saturates the improved Hitchin-Thorpe Inequality. Thus, the Einstein metric on M has to be real-hyperbolic! $\pi_{1}(M)$ now provides an obstruction as it contains at least a subgroup isomorphic to \mathbb{Z}^{3}.

Here are the relevant papers for some of the lemmas:

Here are the relevant papers for some of the lemmas:
C. LeBrun, Four-dimensional Einstein Manifolds, and Beyond, Surveys in differential geometry: essays on Einstein manifolds 247-285, Surv. Differ. Geom., 6, Int. Press, Boston, MA , (1999).
C. Connell, P. Suaréz-Serrato, On higher graph manifolds, Int. Math. Res. Not. (2019), no. 5, 1281-1311.
G. Besson, G. Coutois, S. Gallot, Entropies and rigidités des espaces localment symétriques de curbure strictment négative, Geom. Func. Anal. 5 (1995), 731-799.

Thanks for listening!

Luca F. Di Cerbo

Thanks for listening!

Luca F. Di Cerbo

Thanks for listening!

Go Gators!

Luca F. Di Cerbo

