

• Polynomials:
$$-10x^3 + 5x + 5$$

- · Power functions: Jx, 25
- Trigonometric: Cos(x), sin(x), cot(x)
 finctions
- Exponential: Q^x, a>o, a=1.
 functions
- · hogarithmic : log_b(x), ln(x)
- Absolute : $|x| := \int x, if x = x$. value (-x, if - x = 0).

Functions :

and number x is domain set $f(x) = x^2 = y$.

Functions : 3. New Functions from old. Mathmaticians like creating new Mathematical objects and studying them. a. Algebraic operations: Example: f(x) = Sin(x) and g(x) = 5x+1 . Then fig is a new Enchan where $(f+g)(x) = sin(x) + \sqrt{x+1}$ $\int_{g} (x) = \frac{Sin(x)}{\sqrt{x+1}}$ $fg(z) = sin(z) \cdot \sqrt{z+1}$

Warning: These new functions have new domains and ranges.

Find the domain and range of fog.

Solution:
$$\int og(x) = f(g(x))$$

= $\int g(x) + ($
= $\int \frac{x^2}{x^2} + 1$

To find domain we need to determine where

$$\frac{\chi-2}{\chi-1} + (-3) - \frac{\chi-2}{\chi-1} + (-3) - \frac{\chi-2}{\chi-1} + \frac{\chi-2}{\chi-1} + \frac{\chi-2}{\chi-1} + \frac{\chi-2}{\chi-1} - \frac{\chi-3}{\chi-1} + \frac{\chi-3}{\chi-1} +$$

Example: Continued
And we found that
$$\frac{2x-3}{x-1}$$
 7,0 (t)
for all the x values in
 $(-\infty,1) \cup \mathbb{Z}^{3}z,\infty)$.
We don't include (becase the function is

not defined at f.

d.) Inverse Functions :

Example: Is there a relationship between the two
functions:
$$f(x) = 3x - 2$$
 and
 $g(x) = \frac{2}{3} + \frac{2}{3}$

well
$$f(-2) = 3(-2) - 2 = -8$$

Gred $g(-8) = \frac{-8}{3} + \frac{2}{3} = \frac{-6}{3} = -2$.
So $g(f(-2)) = g(-8) = -2$.

And
$$g(10) = \frac{10}{2} + \frac{2}{3} = 4$$
,
and $f(4) = 3(4) - 2 = 10$.
So $f(g(10)) = f(4) = 10$.

$$T_n \quad both \quad cases : got(x) = x$$
$$f \circ g(x) = x$$

Example: Take
$$f(x) = x^2$$
 and $only$
consider the domain $Eo_1 + oo)$

Note
$$f(x) = \sqrt{2}$$
 since for $x = \sqrt{2}$ we have
 $\sqrt{x^2} = x$
 $\sqrt{(\sqrt{x})^2} = x$

Also note that fix)=y (=) f-(y)=x.

•
$$f(3) = q <=> f^{-1}(q) = 3$$

•
$$f(4) = 16$$
 (=> $f^{-1}(16) = 4$

•
$$f(s) = 25 \iff f^{-1}(2s) = 25$$

In particular
$$e^{\chi}$$
 and $\ln(\chi)$ are investes
 f each other
 $e^{(n(\chi))} = \chi$ Very important.
 $\ln(e^{\chi}) = \chi$
 $f(\chi) = e^{\chi}$ $f(\chi) = g$ iff
 $f^{-1}(\chi) = (n(\chi))$ $f^{-1}(\chi) = \chi$
 $(n(\chi) = \chi)$ iff $e^{\chi} = \chi$
 $(n(\chi) = \chi)$ $(n(\chi) = \chi)$
 $(n(\chi) = \chi)$ $(n(\chi) = \chi)$

Example (Finding Inverses)
Find the inverse
$$f$$
 $h(x) = \frac{x+4}{2x-5}$ HZ
That is find h^{-1} set $h(h^{-1}(x)) = X$
Say $h^{-1}(x) = y$.
Set $h(y) = x$ and solve y .
Then $\frac{y+4}{2y-5} = x = 2y+4 = 2xy-5x$
 $= 2y-2xy = -5x-4$
 $= 2y(1-2x) = -5x-4$

$$=) \quad y = \frac{-5x-4}{1-2x}$$

The investe of
$$h(x) = \frac{x+4}{2y-5}$$
 is

$$h^{-1}(x) = \frac{-5x-4}{1-2x}$$

More Practise: Example: Find the intervals such that $\frac{e^{x}(x-2)}{x^{3}}$), 0

$$ln(3-2x) = 2ln(1-x)$$

Proporties of logarithms
(.)
$$\frac{\ln(a)}{\ln(b)} = \ln(a-b)$$
 if $a-b>0$
(.) $\frac{\ln(a)}{\ln(b)} = \ln(a+b)$ if $a+b>0$
(.) $\ln(a^{k}) = \ln(a+b)$ if $a+b>0$
(.) $\ln(a^{k}) = x\ln(a)$
(.) $e^{\ln(y)} = y$, $y>0$

Exarple	(Absolute	Values					
a.)	Solve	the	inegu	ality	SX-	-2126.	
Solution	;						
we n	red	Sr-	2 < 6	and	- (5:	x-2) <6	
Ie		52-2	26	crel	sx-	27-6	
50	-	-6 L	52-	2 < 6			
=)	_	4 <	JX	< 8			
シ		454	x <	6)6			
50	i f x	e (-4	(8 5)	, 1n	en l	sx-212	6

• $dx + 1 \sqrt{3} =) x \sqrt{1}$

00

-(2x+1) = 3=) $2x+1 \leq -3 = 2x \leq -4 = 2x \leq -\frac{4}{2} = -2$

So xt (-00, -2] U[1, 00) => [2x+1] >> 3.