Power Senies Senies

Last time $-I$ imit Comparison - Alternating Series

Today Power series - Radius f Conv. $-$ Internal of Lonv.

Questions - What is a function \mathcal{P} - Whit is a pour seis? - Why are power seris important? Construct new function leppeset origine functions as powerses.

Power Seris What is a function? Loosely speaking a finction is a rule that takes on input and uniquly assignes an output value. What is a power seris? α sequence $(c_n)_{n \text{ odd}}$ fixed number a. we can construct an Expression $\sum_{n=0}^{\infty} C_n (z-a)^n$ Central Question : what values of Z are we allowed ρ lug in? Then we think ZD ZC_1 $(z-a)$ as a fraction Radius of conveyence: $Every$ power series has a unique $0 \leq R \leq \infty$ $S \cdot t$ $\leq C_n$ (2-a) \circ convey when $|z-a| \leq R$ a bsolutely \circ diverge when $|z-a|>R$ This number is colled the factions of conveys.

Three Examples $\bigcirc \sum_{n=1}^{\infty} \frac{x^{n}}{n}$ $l_0.c$? $2.0. c?$ $[-l, l]$ $f = \frac{1}{a-20} \frac{1}{a+1} = 1$ $\bigotimes_{h=1}^{\infty}\frac{\mathcal{P}^{n}}{h^{2}}$ $2.0.0$ $2 = 1$ $[-1, 13]$ $\bigotimes_{n=1}^{\infty}$ **2.** 0. 0 ?
 $f(x) = \frac{1}{\ln x} \left(\frac{a_n}{a_{n+1}} \right) = \frac{1}{\ln x} = \frac{1}{\ln x} = \frac{1}{\ln x} = \frac{1}{\ln x}$ $\omega \frac{\infty}{\sum_{n=1}^{\infty} \frac{x^{n}}{n!}}$ $8.0.02$ $(-\infty,\infty)$ $R =$ $\lambda = 1$ * The "Fast the welffrient grow" the bégger le radice of conveyerce. Men (a_1) grous faster 14 (a_n) W $\hat{u} = \begin{pmatrix} \frac{a_n}{b_n} \end{pmatrix}$ \rightarrow 0° are $\left(\frac{b_n}{a_n}\right) \rightarrow 0$.

Useful Facto 1) Thm: If the power seis $\sum_{n=2}^{\infty}a_{n}z^{n}$ converge at some $6 \neq 0$, then it conveys for all $|z| < b$. $\frac{\rho_L}{2}$ $|z| \le b?$ Why con't we say at uto $I - 0 - C \left[-e_i R \right]$

The Ratio Test

Orlier (a.) sequence, and suppose

\n
$$
q = \lim_{n \to \infty} \left| \frac{a_{n0}}{a_{n}} \right|
$$
\n
$$
\frac{q}{n0} = \lim_{n \to \infty} \left| \frac{a_{n0}}{a_{n}} \right|
$$
\n
$$
\frac{q}{n0} = \lim_{n \to \infty} \left| \frac{a_{n0}}{a_{n0}} \right|
$$
\n
$$
\frac{q}{n0} = 1, \quad \text{(non-lm)}
$$

$$
pick
$$
 q \ll s \ll 1. Thus $\left|\frac{a_{r+1}}{a_{r}}\right| \to q$

$$
\frac{3 \times 30 \times 5.5}{|d_{N1}|} < q \text{ if } \le 5
$$
\n
$$
\frac{|d_{N1}|}{|d_{N1}|} < 5 |d_{N1}|
$$
\n
$$
\frac{3 \times 30 \times 5.5}{|d_{N1}|} < 5
$$
\n
$$
\frac{|d_{N1}|}{|d_{N1}|} < 5
$$

 \Rightarrow $|d_{N+2}| < 5|d_{N+1}| < 5^2|d_{N}|$ In general, $|a_{N+K}| < S^{K}$ $|a_{N}|$ fixed cost $S_{0} \frac{\partial}{\partial a_{n}}|_{\alpha} < \frac{\partial}{\partial a_{n}}|_{\alpha} < \frac{\partial}{\partial a_{n}}|_{\alpha}$ $\frac{1}{\sqrt{2}}$ $M = M$ and sine $S21$, by gevening sens and direct comparison, $\{a_{n}\}\$ conv $N=N$ <u>• If g II, let E IO sit g -E II,</u> $4m$ 300 st $\frac{|d_{n+1}|}{|d_{n}|}$ > 9-2, ol n 3, N $|a_{\mu+}| > (q-\epsilon)$ $|a_{\mu}|$ \Rightarrow $|a_{N+2}| (q-2) |a_{N+1}| (q-2)^{2} |a_{N}|$

bond from below $S_{\boldsymbol{0}}$ We $\sum^{\infty} |a_{n}|$ > $\sum^{\infty} |a_{N}| \cdot (q^{-2})^{\wedge}$ $n = N$ $n = N$ $u \sim q-2 > 1$, ∞ geomera ζ $|a_{\nu}\rangle = \infty$ divere ble ret dsolite \mathcal{L}_{0} $CDNV$ $\left\vert \xi\right\rangle$

Types of Questions Offina radio of conveya - Use ration test, not test, Geometric seis. - Ratio Test works sometimes. $Examples$ 1 Fineling $CO.C$) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n \cdot 3^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 3^n} \cdot x^n$ $C_n = \frac{(-1)^n}{n \cdot 3^n}$. $R = \lim_{n \to \infty} \frac{(nt)}{1!x^{n}} = \lim_{n \to \infty} \frac{n+1}{n} \cdot 3 = 3$ What happes $6r \pm 3?$ 2^2 3, we get 2^2 converts alt seris cost
 2^2 alt n=1 diverses sin $x = -5$, we get divergens sin $\sum_{n=1}^{\infty} \frac{1}{a^{n}}$ dir. $\mathsf{V}^{\supseteq \mathsf{I}}$

Example 2 (Most important function in Mathems) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ Λ ∞ $\lim_{h \to \infty} |\frac{dn}{a_{n+1}}| = \lim_{h \to \infty} \frac{n!}{\frac{1}{(h+1)!}} = \lim_{h \to \infty} \frac{(nt!)!}{n!} = \lim_{h \to \infty} 1 = \infty.$ Has redio of convergen all of R. Example: $\sum_{n=0}^{\infty} \frac{3n(3n-2) \cdot 4 \cdot 2}{(1-2)^n}$ Λ = Ω $ln \frac{2nl2n-23n2}{n!}$ (n+1)!
 k^300 $n!$ (an+2) (an) κ ²00 $=$ $\frac{ln \pi}{ln+2}$ = $2 \frac{ln \pi}{ln+1}$ = $2 \frac{ln \pi}{ln+1}$ = 2 $|x-2| < 2$ And interned of conv $z)$ -22222 => $0 < x < 4$ What hppes at $T = (0, 4)$ 0 od 4^2

4. Find the interval of convergence of the following power series:

(a)
$$
\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}
$$
 (solution: (-1, 1])
\n(b)
$$
\sum_{n=1}^{\infty} \frac{4^n (x - 4)^n}{n}
$$
 (solution: [15/4, 17/4))
\n(c)
$$
\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{4^n}
$$
 (solution: (-2, 2))
\n(d)
$$
\sum_{n=1}^{\infty} \frac{n! x^n}{(2n)!}
$$
 (solution: (-\infty, \infty))

(e)
$$
\sum_{n=1}^{\infty} \frac{(-1)^n n! (x-5)^n}{3^n}
$$
 (solution: $x = 5$)
\n(f)
$$
\sum_{n=1}^{\infty} \frac{(-2x)^n}{n^2 + 1}
$$
 (solution: $[-1/2, 1/2]$)
\n(g)
$$
\sum_{n=1}^{\infty} \frac{n! (x+1)^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}
$$
 (solution: $(-3, 1)$)
\n5 Find the radius of convergence of the power series
$$
\sum_{n=1}^{\infty} \frac{(3n)!}{3^n} x^n
$$
 (solu

cries $\sum_{n=0}$ $\frac{\sum_{i=1}^{n} x^n}{(n!)^3} x^n$. (solution: the radius of converg $1/27.$

Exarise: \leq $\frac{(1)^{n+1}x^{2n}}{n (ln(n))^2}$

· To tuis still a pour soir? $-$ Yes, a lot of \qquad weftpun.

 $R = \frac{ln m (n+1)(ln(n+1))^{2}}{n \cdot ln (n)^{2}}$ · Certo? \cdot $l.0.0$? E_{ndpoint} $=\frac{ln(1)}{ln(100)}\left(\frac{p+1}{n}\right)\cdot\left(\frac{ln(100)}{ln(100)}\right)^{2}\neq 1.$ · Internet of Conv?

well $\lim_{n\to\infty}\frac{ln(n+1)}{ln(n)}\frac{c^{1/n}}{1}$ $\frac{1}{n\to\infty}\frac{1}{n}$ $\frac{1}{n\to\infty}\frac{n}{n+1}=1$. δ $2=1$.

Il by allendry seis lest. Lonoye et

 $\sum_{n=1}^{\infty} \frac{1}{n^2} (x+4)^n$ Exerise: $\frac{1}{100}$ $\int e^{x} dx$? $a = -4$ $l.0. c$? Interned of conv. Endpoints? 0 $\left(\begin{array}{cc} \sin \frac{n^{2}}{2^{3n}} & \frac{2^{3(n+1)}}{(n+1)^{2}} & \frac{1}{(n-1)^{20}} & \frac{n}{(n+1)^{2}} & \frac{3}{2^{3}} & = 8 \end{array}\right)$ $\begin{array}{ccccccccc} & S_0 & & Q & 0 & C & & iS & & S & \end{array}$ ω we need $|x-a| \leq P$ $\left\langle -\right\rangle$ $\left[\alpha - l - 4 \right)$ | ≤ 6 $\left(\rightleftarrow)$ -8 \leftarrow $x+y$ \leftarrow 8 (5) -12 2 2 4 $\begin{array}{ccc} \n\sqrt{2} & \frac{1}{2} & \frac{1}{$. What hoppers at the emographs? $\frac{1}{2^{3}}$ $\frac{n^{2}(\delta)^{n}}{2^{3}}$ = $\frac{n^{2}(\delta)^{n}}{(\delta)^{n}}$ = $\frac{n^{2}(\delta)^{n}}{(\delta)^{n}}$ = $\frac{n^{2}(\delta)^{n}}{(\delta)^{n}}$ = $\frac{n^{3}}{(\delta)^{n}}$ $\frac{1}{8^{n}} = \sum_{n=1}^{\infty} (-1)^{n} n^{2} (\frac{1}{8})^{n} = \infty$ by test for

 $\frac{n!}{100}$ Exerise n=o Find the $l, 0, C$ $\lim_{n\to\infty} \frac{n!}{log^n} \cdot \frac{log^{n+1}}{(n+1)!} = \lim_{n\to\infty} \frac{log}{n+1} = 0$ So R.o.c R= 0. Meaning the only iS Q .

 $Exni(S)$ (-1)ⁿ $(x-4)^n$ Z $\overline{(N+1)^2}$ $R = \lim_{n \to \infty} \frac{1}{(n+1)^2} / \frac{1}{(n+2)^2} = \lim_{n \to \infty} \frac{(n+2)^2}{(n+1)^2} = 1$ 50 we have convergence of $f(4-1, -4, 1)$ $= (-5, -3)$ $x = -5$ $\int_{0}^{\infty} (-1)^{n} \cdot (-5-4)^{n}$ $M = 0$ $M + 1$ $=$ $\frac{\infty}{2}$ and diverge sine $\left(\frac{q^{n}}{n^{4}}\right)$ -> as $\sum_{n=1}^{\infty}$ $\left(-1\right)^{n} \left(-3-4\right)^{n}$ = $\sum_{n=1}^{\infty}$ = ∞ $h = 0$ $I.0.$ $(-5,-3)$

Ferise (4) $Z^{\frac{(-2)^{n}x^{n+1}}{n+1}}$ $R = \lim_{n \to \infty} \left| \frac{u_n}{a_{n+1}} \right|$ $\frac{1}{2}$ $\frac{1}{\frac{1}{2}}$ $\frac{2^{n}}{n+1}$ $\frac{n+2}{2}$ $\frac{1}{\frac{1}{2}}$ $\frac{1}{n+1}$ $\frac{n+2}{2}$ $\frac{1}{2}$ $Centr: O$ so $(-\frac{1}{2},\frac{1}{2})$ $\sum_{n=0}^{\infty} \frac{(-2)^{n} \cdot (\frac{1}{2})^{n+1}}{n+1} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-2)^{n} \cdot (\frac{1}{2})^{n}}{n+1}$ $=\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n+1}$ (on by alt. svi $Z = \frac{2}{\pi} \frac{1}{\pi} \frac{1}{\pi} \frac{1}{\pi} \frac{dN}{dr}$ $\left(-\frac{1}{2},\frac{1}{2}\right)$ $\left(-\frac{1}{2},\frac{1}{2}\right)$

