0 iscussion II and \mathcal{N}_{0} us, 2024 Power Series Repr. Last Time
Pour series R adius of Conv. $-$ Internet of Lone. Today Power Soris Representations. Ideas: (Main ways to obtain power series rep) Geometric series N^{B} : Fix a number Z, $\left\{ z^{n} = \int_{0}^{\frac{1}{t-k}} 1^{k} dx \right\}$ no diverge 12171 D) Termuise oiff erontiation and integration along with geometric seris.

Differentiating and Integrating Power serie. Let $\sum_{n=0}^{\infty} d_n (z-a)^n$ be a power seris with $\frac{\omega}{dx} \sum_{n=0}^{\infty} a_{n} (z-a)^{n} = \sum_{n=0}^{\infty} \frac{\omega}{dx} a_{n} (z-a)^{n}$ = $\sum_{n=0}^{\infty} \int \cdot a_{n} (z-a)^{n-1}$ and has radius of convergence R $\int_{0}^{\infty} \sum_{n=0}^{\infty} d_{n} (z-a)^{n} dz = \sum_{n=0}^{\infty} d_{n} (z-a)^{n} dz$ = $C + \sum_{n=1}^{\infty} \frac{a_n}{n+1} (z^{-a})^{n+1}$ ractius of convergence R and has

Example 3 : $g(x) =$ $\sqrt{1-x^2}$ Two examples where this $h(x) = h(s-x)$ idea works!

Example 4: μ $a = 0$. $f(z) = \frac{1}{(1+z)^3}$ $h(z) = \frac{1}{1+z}$ $|2|$ $h'(2) = \frac{d}{dz}(1+z)^{-1} = -((1+z))^{-2}$ $h''(2) = \frac{d}{dz} - (1+z)^{-2} = 2(1+z)^{-3} = 2f(2).$ Well $h(z) = \sum_{n=0}^{w} (-z)^n = \sum_{n=p}^{\infty} (-1)^n z^n$ $h'(z) = \sum_{n=0}^{\infty} (-1)^n \cdot n \cdot z^{n-1}$ $h''(2) = \int_{0}^{\infty} (1)^{n} \cdot \ln (n-1) \cdot 2^{n-2}$ $R = 2$ S_0 $f(\ell) = S_{\ell} \frac{1}{2} \cdot (-1)^n \cdot \Lambda \cdot (n-1) \cdot 2^{n-2}$, $\lambda \cdot 2 \cdot (-1) \cdot 2^{n-1}$

Example $f(z) = \arctan(\sqrt{z})$ $a = 0$. $\overline{\sqrt{x}}$ $\frac{a}{\sqrt{170}}$ - arch(x) = $\frac{a}{\sqrt{170}}$ (-1) $\frac{2}{\sqrt{170}}$ $I.0. c \quad [-1, 1]$ $rac{v}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{n}}$, allow where \sqrt{x} 20 $-1 \leq x \leq 1$ $\frac{\sum (-1)^{n} \cdot x^{n} \cdot \sqrt{x}}{a^{n+1}}$ - Both condition mot $hold$. $\frac{arch(\sqrt{x})}{\sqrt{x}} = \sum_{n=0}^{\infty} \frac{(-1)\cdot x^{n}}{2n+1}$ allowed when $-1 \leq x \leq 1$ \int_{0}^{1} 200 and $-15x51 = 200$ as $0 < x \leq 1$

ERROR Estimation: (Allernating Series Version) Recall that if given a senies $\sum_{n=1}^{\infty}(-1)^{n}a_{n}$ $n = 0$ 0 0_n 7 5.4 1 (an) decreasing \bigotimes $\bigcup_{k \ge 0}$ By Ast we have conveger. We can dlso estimate erns. If $S_{\lambda} := \sum_{(v)} a_{n}$, the the l'rue at step N is! $E_{N} = \left| \int_{0}^{\infty} \hat{\zeta}(\cdot) \hat{d}_{N} - S_{N} \right| \leq 0_{N+1}$ $\overline{A} = n$ Why? Well $\sum_{n=1}^{\infty}(-1)^{n}a_{n}=\sum_{n=1}^{\infty}(-1)^{n}a_{n}$ $\mathsf{P} \subset \mathsf{Q}$ $\frac{\infty}{\sqrt{(-1)^n} a_n}$ $n = \mu + 1$

 $N+1$ i s even $Q_{\text{N}t}$ $+$ $\alpha_{\mu+5}$ $\left(-\frac{a_{N+1}+a_{N+3}}{\cdots}\right)-a_{N+4}$ Sine a_{n+2} $7/d_n$ +3 $\int_{0}^{\infty} (-1)^{n} a_{n} \leq a_{n+1}$ $S_{\mathcal{O}}$ $n = \mu + 1$ 74 Ntl odd $-d_{N+1}+d_{N+2}-d_{N+3}+d_{N+4}$ a_{N+S} + $\mathbf{\mathsf{O}}$ \overline{O} $4 - a_{\nu+1} + a_{\nu+2} < a_{\nu+1}$ \overline{a} \int $N = N + 1$

 74 Ntl even $a_{\mu t} - a_{\mu t}$ + $a_{\mu t}$ + $a_{\mu t}$ - $a_{\mu t}$ $+ a_{\mu+5}$ γ -9, 1 $\frac{a_{N+1}-a_{N+2}}{a_{N+1}}$ 4 Ntl odd $-a_{N+1}(+0_{N+2}-0_{N+3})(-0_{N+4}-0_{N+5})+...$ \overline{o} $\gamma - a_{N+1}$ Thus $-a_{\text{N}t1} \leq \sum_{n=1}^{\infty} (-1)^n a_n - S_{\text{N}} \leq a_{\text{N}t1}$

Approximating Integrals 1) (1/2) dx (see selow) $\bigodot \int_{0}^{1} \frac{x}{1+x^{5}} dx$ (exerise)

Example: Mow much term is need \diamond 9000×100 $\int_{2}^{1} ln(1+x) dx$ with accurry $0.01 = \frac{1}{100}$ Recall that $\frac{1}{n}(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n}}{n}$, IOC $(-1, 1)$ S_0 $\int_{h(l+x)} dx$ $\frac{1}{\sqrt{n}}\sum_{n=0}^{\infty}\int_{0}^{1}(-1)^{n+1}x^{n}\sqrt{n}$ $= \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{\gamma^{n+1}}{n \cdot (n+1)}$ $=$ \leq (-1)ⁿ⁺¹. $\frac{1}{n \cdot (n+1)}$ いこい alterni soi.

. There are only two N's that solve N^2 + 3N + 2 = 100 Lo one is regation and the Othe Just bigger tha 8.5. " 8 wont work sine the $8^2 + 3.872 < 100$. · But 9 will sin $4^{2}+3.9+4$) $85^{2}+3.8+8$) (OU. • $\int_{0}^{1} 0^{q+1} < \frac{1}{100}$ $\Rightarrow \left| \int_{0}^{1} \left| h(1+x) dx - \sum_{n=1}^{q} (-1)^{n+1} \cdot \frac{1}{n \cdot (n+1)} \right| \right|$ $<$ d_{q+1} $<$ $\overset{\rightharpoonup}{\circ}$ \circ 9 is pu smillet term sit erro < Too

 f_0 llowin Approxiate the $Exa\varphi\alpha$: Integral: $\int_{x}^{1} \frac{x}{1+x^{s}} dx$ 0: Find uppor band in error when wais 11th non-reg term. O Find pour seris expiression of FIS 1 Termuise inlegemen 3 Appy taybr Remaindr or Allernaty serve estimetron Objett un voc geometrie seris former, π $\frac{1}{1+x^{5}}$ = π $\frac{1}{1-(x^{5})}$ condition $\overline{\mathcal{C}}$ $\left| -x^{5}\right|$ < $\left| \right|$ $=$ α $\stackrel{\infty}{\sim}$ (x^s) $=$ $x \frac{8}{5} (-1)^n x^{5n}$ = $\sum_{i=1}^{\infty} (-1)^{n} x^{5^{n+1}}$ 1 Termusé inlycetion:

 $\int_{0}^{1} \frac{x}{1+x^{5}} dx = \int_{0}^{\infty} \xi(t)^{n} x^{5^{n+1}} dx = \sum_{n=0}^{\infty} (-1)^{n} \int_{0}^{1} x^{5^{n+1}} dx$

 $=\frac{80}{5(-1)^n} \times \frac{8^{n+2}}{10^{n+1}}$ $=\frac{80}{5}(4)^{n} \frac{1}{5n+2}$ $\overline{\mathsf{M}}$ هر And we can use A.S. error opproximho. 1.e for exaple $E_{10} = \left(\int_{0}^{1} \frac{z}{1+z^{2}} dz - \sum_{n=1}^{\infty} \frac{1}{(1+z^{2})^{n}} \right)$ $\frac{1}{2}$ $S(l0+1)+2$ RJQ_{N+1}

Some additional Results (Talen from

. This first result tells as that ψ a power seris convey at some point so, then i t converges absolutig on $(-1201, 1201)$ $l.e.$ an entire intend with radio $|z_0|$. $\underbrace{\text{Im} (\text{6-5.1})}{\text{G}}$ Given a power series $\mathcal{Z}_{d,n}x^n$ م - ۸
. \dot{y} $\sum_{n=1}^{\infty}a_{n}x^{n}$ corregs at x_{0} , th $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for d^n $|x| < |x_0|$. のこつ (pt: compare with conveyor Geometric seris)

This next result is used along with the fact that a power seres conveye absolute raside its padies of convergence $7h$ m $(6.5.2)$ Pouer seres conveye mifornitz en compact Subsets contained in the 20C. More precisely, given $\sum_{n=0}^\infty a_n x^n$, if $\leq a_{1}x^{n}$ conveye absolutely at x_{0} , $\frac{k}{\sqrt{d_n}x^n}\rightarrow \frac{\infty}{\sqrt{d_n}x^n}$ uniformit a Σ -C, C] whe $C:= |x_0|$. (Pt: Use absolute conveyers to show that tu pour seus is uniform Caucy).

 $P_1 (6.5.1)$ $\frac{\lim_{k\to\infty}\sum\limits_{n=0}^{k}a_nx_0^n}{\text{conveye}}$ let $|x|\leq |x_0|.$ G/m

obince we have conceyent at 20, we know to zov. That is 3 M 20, and No>0 $-M$ $<$ $a_{n}x_{o}$ $<$ M , $d_{1}x_{o}$ \Rightarrow $|d_n| \leq M \cdot \frac{1}{|x_0|}$, $d\leq n \geq N$. · By Δ -inequily the

we have $\sum_{n=1}^{N} |a_n x|^n \leq \sum_{n=1}^{N} |a_n|^{\sum_{n=1}^{N} \frac{1}{n}} \int_{0}^{1} |a_n x|^n dx$ $5\overline{u}u$ $|\frac{x}{x_0}|<1$, we know $\sum_{n=1}^{\infty}M\cdot|\frac{x}{x_0}|^n$ convergant geometric series, and hence by direct conforison $\frac{\infty}{\leq |a_1x|}$. The $\sum_{n=1}^{\infty}$ $\left| \frac{d^{n}}{d^{n}} \right|$ converge

 $n = o$

 $P + (6 - 6 - 2)$ oft suffices to show uniform Caucy. Since $\sum a_n x^n$ conveye absolutt d'20, we know $\left(\sum_{n=2}^k |a_n| \cdot |x_o|^n\right)_{k=2}^{\infty}$ is a Cauch seq.

led E70. Choose N 20 5+ $\sum |a_{1}| |x_{0}|^{n} - \sum |a_{1}| |x_{0}|^{n} \leq \sum$ $rac{1}{\sqrt{\frac{1}{1-\epsilon}}}$ $N = M + 1$ Thus $\sum |a_{n}| \cdot |x_{0}|^{n} \leq \sum_{i} dl$ $K>1/2$

Let K7 M 2N and ossere The $|\xi_{a_{n}x^{n}}-\xi_{a_{n}x^{m}}|$ \leq \leq $|a_{n}| \cdot |x|^{n}$ \leq \geq $|a_{n}| \cdot |x_{0}|^{n}$ \leq $n = m+1$ and x^s independ of N. Here we showed uniform caucy => uniform coneje 뎡