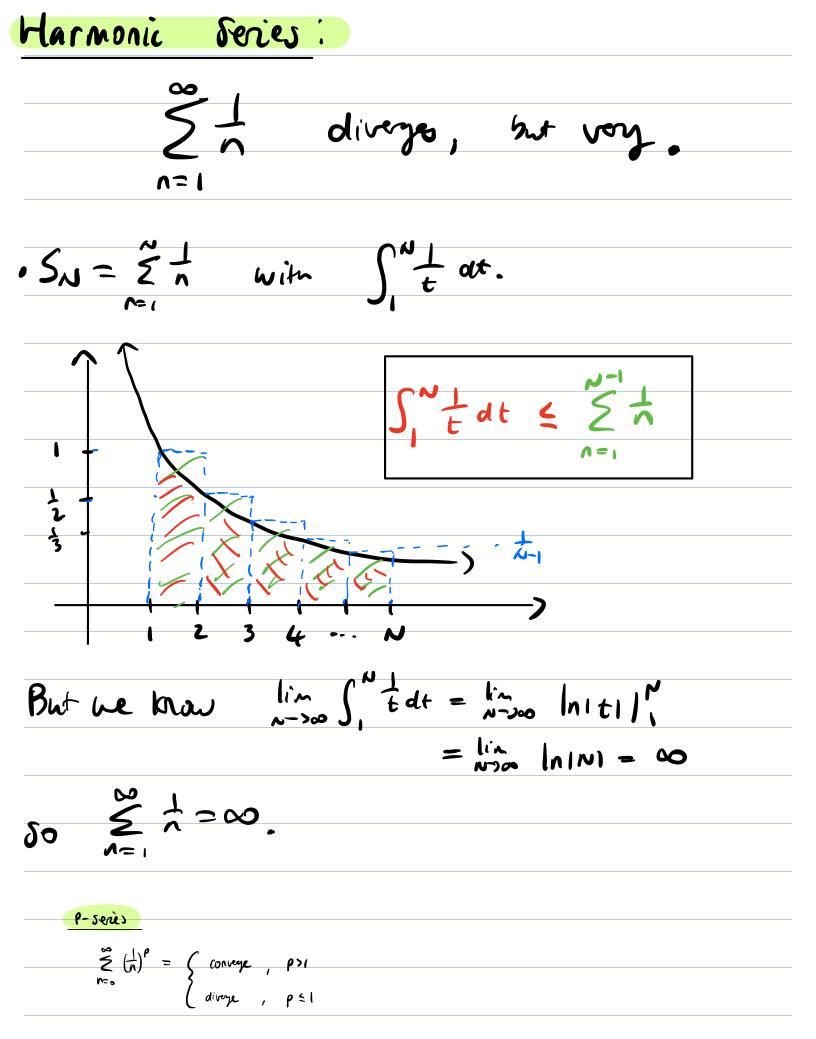
Discussion Notes October 8, 2024 Sequences and Sories hast Time - Probability - Work Today - Seguences - Series Ask Yourself: What is a sequence?
What is a series.

Overview		
· Algebraic Properties		
· Glometric Series	(exande)	
- Telescopic Seris	LEXample)	
· Hermonic series	(example)	
· Test for divegace	(popition)	

Algebruic Iroper ties

	$(a_n) \rightarrow a$, $(b_n) \rightarrow b$, $(constant)$.
·.) (Can)	-) Ca
2) (anton) -> a+b
3.) Qnbn	
4.) an	-) g prided 6±0
s.) lanl	
	Order limit Th
For	segure (an) -> a (6n) -> b
(.) H	antio broll n, atio
2) H	da7,6n for dl n, a7,6.

Geometric Sories: $\bullet \sum x^n = \frac{1}{1-x}$ if 121<1 N=0 • Zz[°] diveyes if 12171 C so that we can C so that we can Observe that for x=1, we have $(\chi-1)$ $(l+\chi+\chi^2+\cdots+\chi^N)$ $= x + x^{2} + \ldots + x^{n+1} - 1 - x - \ldots - x^{n}$ $= x^{N+1} - 1$ =) $1+x^{2}+...+x^{n} = \frac{x^{n+1}-1}{x-1}$ Where $\lim_{N \to \infty} \frac{x^{N+1} - 1}{x - 1} = \int \frac{1}{1 - x}$ 121<1 **V-)**00 2 |x|) | $1 + x + x^2 + \dots + x^N = N + 1$ if x = 1, so And $\tilde{\Sigma} z^{N} = \infty$, and $\tilde{\Sigma}(H)^{n}$ ossichts her 0 and 2. @(∸Ŋ



Telescopic Series

Griver a sequence (br) we can form Ž(bn - bn+1). series Observe that the sequence of partial Sums $\int_{AJ} = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4)$ + ... + (bp - bn+1) $= b_i - b_{N+1}$ So $\mathcal{E}(b_n - b_{n+1})$ (on verge iff (bn) converge. 1>1

$$\frac{E Kauple}{2} : (10nvegnel)$$

$$\frac{2}{2} \frac{2}{n^3 + 3n^2 + 2n}$$

$$\frac{2}{n^2 1}$$

$$\frac{2}{n(n^2 + 3n + 2)} = \frac{2}{n(n+1)(n+2)} = \frac{2}{n} + \frac{8}{n+1} + \frac{6}{n+2}$$

$$\frac{2}{n(n^2 + 3n + 2)} + \frac{8(n^2 + 3n)}{n(n+1)(n+2)} + \frac{6(n^2 + n)}{n(n+1)(n+2)}$$

$$\frac{2}{n(n^2 + 3n + 2)} + \frac{8(n^2 + 3n)}{n(n+1)(n+2)} + \frac{6(n^2 + n)}{n(n+1)(n+2)}$$

$$\frac{2}{n(n+1)(n+2)} = \frac{1}{n(n+1)(n+2)}$$

$$S_{0} \qquad \sum_{h=1}^{\infty} \frac{1}{h} + \frac{1}{h+2} - \frac{2}{h+1}$$

$$= \sum_{h=1}^{\infty} \left(\frac{1}{h} - \frac{1}{h+1}\right) - \left(\frac{1}{h+1} - \frac{1}{h+2}\right)$$

$$= \sum_{h=1}^{\infty} \left(\frac{1}{h} - \frac{1}{h+1}\right) - \left(\frac{1}{h+1} - \frac{1}{h+2}\right)$$

$$= \sum_{h=1}^{\infty} \sum_{h=1}^{n} \sum_{h$$

And
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} b_1 - \lim_{n \to \infty} b_{n+1}^n$$
$$= b_1$$
$$= \frac{1}{2}$$

. If the series converge, then the tail of the sequence of wefficients gets smll. Thm: If Ean convoye, then (an) ->0. Prof: Note that $S_{N} - S_{N-1} = \sum_{\substack{N > 1 \\ N > 1}}^{N} a_{n} + \sum_{\substack{N > 1 \\ N > 1}}^{N-1} a_{n} = \alpha_{N}.$ And $\lim_{N \to \infty} S_N - S_{N-1} = \lim_{N \to \infty} S_N - \lim_{N \to \infty} S_{N-1} = 0.$ Divergence Test So if (an) - so, ten Éan diverges. Example: (an)-)0 het Éan diverges. Take Zh which diverge. But (t)->0.