Connection to NC-Function Theory

References

On the Connection Between Multipliers of The Drury-Averson Space and The Non-commutative Hardy Space via Realizations

Vikus J. v. Rensburg

University of Florida, Gainesville

Analysis Seminar, Feb 28, 2025

Connection to NC-Function Theory

Outline

- Vector Valued RKHS
- The Drury Averson Space
- Characterization of the Schur Class

2 Non-Commutative Setting

- Non-Commutative Formal RKHS
- NC-Hardy Space
- Characterization of the Non Commutative Schur Class

Connection to NC-Function Theory

 $\underset{000000}{\text{Connection to NC-Function Theory}}{\text{Connection to NC-Function Theory}}$

References

Vector Valued RKHS

Vector Valued Reproducing Kernel Hilbert Space (RKHS)

Let ${\mathcal E}$ denote a coefficient Hilbert space, and Ω a set.

Definition

We say a linear subspace $\mathcal{H}_{\mathcal{E}} \subseteq \mathcal{F}(\Omega, \mathcal{E})$ is a <u>vector-valued RKHS</u> to mean:

- $\textcircled{0} \mathcal{H}_{\mathcal{E}} \text{ has an inner product turning it into a Hilbert space, and}$
- **2** all point evaluations are bounded. That is for all $w \in \Omega$, the linear map

$$\Phi(w): \mathcal{H}_{\mathcal{E}} \to \mathcal{E}$$

given by $f \mapsto f(e)$ is bounded.

We want to apply Riesz representation as in the scalar case. So we proceed as follows: Fix $w \in \Omega$, and $e \in \mathcal{E}$:

- $f \mapsto \langle f(w), e \rangle_{\mathcal{E}} : \mathcal{H}_{\mathcal{E}} \to \mathbb{C}$ is a bounded.
- 2 Apply Riesz Representation to obtain a unique $K(\cdot, w)e \in \mathcal{H}_{\mathcal{E}}$ such that

$$\langle f, K(\cdot, w) e \rangle_{\mathcal{H}_{\mathcal{E}}} = \langle f(w), e \rangle_{\mathcal{E}}.$$

One observes that K(z, w) = Φ(z)Φ(w)* for all z, w ∈ Ω so that we get a map

$$K: \Omega \times \Omega \rightarrow B(\mathcal{E})$$

called the **reproducing kernel** of $\mathcal{H}_{\mathcal{E}}$.

Connection to NC-Function Theory

References

Vector Valued RKHS

Reproducing Kernel (Continued)

Recall that we have a notion of positivity for operator-valued reproducing kernels:

Definition

Given a function $K : \Omega \times \Omega \rightarrow B(\mathcal{E})$ we say K is **positive** to mean for any finite number $z_1, ..., z_n \in \Omega$ the matrix

$$\begin{bmatrix} K(z_1, z_1) & \dots & K(z_1, z_n) \\ \dots & \dots & \dots \\ K(z_n, z_1) & \dots & K(z_n, z_n) \end{bmatrix}$$

is positive in $M_n(B(\mathcal{E})) \simeq B(\mathcal{E}^n)$.

It follows immediately from the factorization above that the reproducing kernels are positive.

Connection to NC-Function Theory

References

Vector Valued RKHS

Vector Valued Moore

We can go the opposite direction first. Given a positive map

 $K: \Omega \times \Omega \rightarrow B(\mathcal{E})$

we use the positivity to define an inner product on the span of $K(\cdot, w)e$ ranging over $w \in \Omega$, and $e \in \mathcal{E}$. The details of this result is known as Moore's Theorem.

Theorem (Vector Valued Moore)[7]

If $K : \Omega \times \Omega \to B(\mathcal{E})$ a positive function. Then there exists a unique \mathcal{E} -valued RKHS $\mathcal{H}_{\mathcal{E}}(K)$ on Ω with K as its reproducing kernel. Moreover the span of

$$\left\{ oldsymbol{K}(\cdot,oldsymbol{w})oldsymbol{e}:oldsymbol{w}\in\Omega,oldsymbol{e}\in\mathcal{E}
ight\}$$

can be identified with a dense subspace in $\mathcal{H}_{\mathcal{E}}(K)$.

Connection to NC-Function Theory

References

Vector Valued RKHS

Vector Valued Moore (Consequence)

As a consequence of Moore's theorem we see that *K* : Ω × Ω → *B*(*E*) being positive is equivalent to the existence of an auxiliary RKHS *H*_{*E*}(*K*) such that we can factor our map

$$K(z,w) = \Phi(z)\Phi(w)^*$$

for some function $\Phi : \Omega \to B(\mathcal{H}_{\mathcal{E}}(K), \mathcal{E}).$

Indeed because if K is positive, the function Φ above is exactly bounded point evaluation from the RKHS H_E(K) obtained by Moore's theorem.

- Given $F : \Omega \to B(\mathcal{E}, \mathcal{E}_*)$, and $f \in \mathcal{H}_{\mathcal{E}}$ we define $F \ f : \Omega \to \mathcal{E}_*$ by $w \mapsto F(w) \circ f(w)$.
- **2** We say *F* is a **multiplier** from $\mathcal{H}_{\mathcal{E}} \to \mathcal{H}_{\mathcal{E}_*}$ to mean that

$$F f \in \mathcal{H}_{\mathcal{E}_*}$$

for all $f \in \mathcal{H}_{\mathcal{E}}$.

- The above follows from bounded point evaluation, and an application of the Closed Graph theorem that each multiplier induces a bounded operator.
- We denote M(E) the multiplier algebra endowed with the operator norm.¹

¹Only an algebra when $\mathcal{E}=\mathcal{E}_*$

- A very useful fact in the scalar setting is that the kernel functions are eigenvectors for adjoints of multipliers.
- We have a similar-type result that says

$$M_F^* K_{\mathcal{E}_*}(\cdot, z) e = K_{\mathcal{E}}(\cdot, z) F(z)^* e$$
(1)

for all $z \in \Omega$, $e \in \mathcal{E}_*$.

- The above follows from an inner product calculation along with the reproducing property, and density of kernel functions.
- For ease of notation, we will drop the subscripts on the kernel function from here on.

Connection to NC-Function Theory

The Drury Averson Space

We will focus on a specific RKHS known as the Drury-Averson space.

• Denote $K(z, w) = \frac{1}{1 - \langle z, w \rangle} : \mathbb{B}^d \times \mathbb{B}^d \to \mathbb{C}$.

② Form an operator valued kernel $K(z, w) \otimes I_{\mathcal{E}} : \mathbb{B}^d \times \mathbb{B}^d \to B(\mathcal{E}).$

The **Drury-Averson** space (or \mathcal{E} -valued version) is the RKHS on \mathbb{B}^d induced by the reproducing kernel $K(z, w) \otimes I_{\mathcal{E}}$, and denoted $\mathcal{H}^2_{\mathcal{E}}$.

Connection to NC-Function Theory

References

Characterization of the Schur Class

Characterization of the Schur Class

Theorem (Ball, Vinnikov, Trent 2001 [2])

Let $F \in \mathcal{M}(\mathcal{E}, \mathcal{E}_*)$. The following are equivalent:

- **I** *F* is a contractive multiplier.
- There exists an auxiliary Hilbert space H, and a unitary colligation

$$U = egin{bmatrix} A_1 & B_1 \ \cdots & \cdots \ A_d & B_d \ C & D \end{bmatrix} egin{array}{c} \mathcal{H} & \mathcal{H}^{\oplus^d} \ \mathcal{E} & \mathcal{E}_* \end{pmatrix}$$

that realizes *F*. Meaning that for all $z \in \mathbb{B}^d$

$$F(z) = D + C(I - \sum_{i=1}^{d} z_i A_i)^{-1} (\sum_{i=1}^{d} z_i B_i)$$
(2)

Connection to NC-Function Theory

References

Characterization of the Schur Class

Characterization of the Schur Class ³ continued

Theorem (Ball, Vinnikov, Trent 2001 [2])

3 The function K_F given by

$$K_F(z,w) = K(z,w) \otimes I_{\mathcal{E}_*} - F(z)(K(z,w) \otimes I_{\mathcal{E}})F(w)^*$$

defines a positive kernel $K_F : \mathbb{B}^d \times \mathbb{B}^d \to B(\mathcal{E}_*)$. That is there exist an auxillary Hilbert space \mathcal{H} , and function $H : \mathbb{B}^d \to B(\mathcal{H}, \mathcal{E}_*)$ such that

$$K_F(z,w) = H(z)H(w)^*$$

We can obtain a contractive colligation that realizes F.

2

²Write down theorem on board

³The space of contractive multipliers is referred to as the Schur Class

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

Proof: (1 \iff 3)

The first equivalence follows from the "eigenvector-type" property mentioned earlier. Indeed suppose $||F|| \le 1$, and let $x_1, ..., x_n \in \Omega$, and $e_1, ..., e_n \in \mathcal{E}_*$. From contractivity we get

$$\left\|\left|\sum_{i} M_{F}^{*} K(\cdot, z_{i}) \boldsymbol{e}_{i}\right\|\right|_{\mathcal{H}_{\mathcal{E}}}^{2} \leq \left\|\sum_{i} K(\cdot, z_{i}) \boldsymbol{e}_{i}\right\|_{\mathcal{H}_{\mathcal{E}_{*}}}^{2}$$

Since $M_F^*K(\cdot, z_i)e_i = K(\cdot, z_i)F(z_i)^*e_i$ we have

$$\left\|\sum_{i} K(\cdot, z_{i}) F(z_{i})^{*} e_{i}\right\|_{\mathcal{H}_{\mathcal{E}}}^{2} \leq \left\|\sum_{i} K(\cdot, z_{i}) e_{i}\right\|_{\mathcal{H}_{\mathcal{E}_{*}}}^{2}$$

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

Expanding out the inner product we obtain

$$\sum_{i,j} \langle (\mathcal{K}(z_i, z_j) - \mathcal{F}(z_i) \mathcal{K}(z_i, z_j) \mathcal{F}(z_j)^*)) e_j, e_i \rangle_{\mathcal{E}_*} \geq 0.$$

As required to show positivity of

$$K(z,w) - F(z)K(z,w)F(w)^* = \frac{I - F(z)F(w)^*}{1 - \langle z,w \rangle}$$

For the converse, we can reverse the calculation done above, and since the span of kernel functions is dense in $\mathcal{H}_{\mathcal{E}_*}$ it follows that F^* is contractive, and hence F is contractive.

Lurking Isometry Step			
Characterization of the Schur Class			
Commutative Setting	Non-Commutative Setting	Connection to NC-Function Theory	References

Proof: (3
$$\implies$$
 2)

Since K_F is positive, we can apply Moore's theorem to obtain a Hilbert space $\mathcal{H}_{\mathcal{E}_*}(K_F) = \mathcal{H}$, and a function $H : \mathbb{B}^d \to B(\mathcal{H}_{\mathcal{E}_*}, \mathcal{E}_*)$ such that for

$$rac{I_{\mathcal{E}_*}-F(z)F(w)^*}{1-\langle z,w
angle}=H(z)H(w)^* ext{ for all }z,w\in\mathbb{B}^d.$$

Reorganize the equation, and rewrite the inner product in terms of rows and columns operators to obtain

$$I_{\mathcal{E}_{*}} + \left(\begin{bmatrix}\overline{z_{1}}\\ \dots\\ \overline{z_{d}}\end{bmatrix} H(z)^{*}\right)^{*} \begin{bmatrix}\overline{w_{1}}\\ \dots\\ \overline{w_{d}}\end{bmatrix} H(w)^{*} = H(z)H(w)^{*} + F(z)F(w)^{*}$$

 $\underset{000000}{\text{Connection to NC-Function Theory}}{\text{Connection to NC-Function Theory}}$

References

Characterization of the Schur Class

Proof of Schur Class Characterization

The equation (3) above is what will allow us to well defined linear map acting isometrically on a subspace of $\mathcal{H}^{\oplus^d} \oplus \mathcal{E}_*$. Indeed define

$$\mathcal{D}_{0} := \operatorname{span} \left\{ \begin{bmatrix} \overline{w_{1}} H(w)^{*} e_{*} \\ \vdots \\ \overline{w_{d}} H(w)^{*} e_{*} \\ e_{*} \end{bmatrix} : w \in \mathbb{B}^{d}, e_{*} \in \mathcal{E}_{*} \right\} \subseteq \mathcal{H}^{\oplus^{d}} \oplus \mathcal{E}_{*}$$

and define V_0^* on \mathcal{D}_0 by the linear map that sends

$$\begin{bmatrix} \overline{w_1} H(w)^* e_* \\ \dots \\ \overline{w_d} H(w)^* e_* \\ e_* \end{bmatrix} \mapsto \begin{bmatrix} H(w)^* e_* \\ F(w)^* e_* \end{bmatrix} \subseteq \mathcal{H} \oplus \mathcal{E}.$$

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

Using (3) in the following computation we obtain

$$\left|\left|\begin{bmatrix}H(w)^*e_*\\F(w)^*e_*\end{bmatrix}\right|\right|^2 = \langle (H(w)H(w)^* + F(w)F(w)^*)e_*, e_*\rangle_{\mathcal{E}_*}$$

$$= \langle \boldsymbol{e}_*, \boldsymbol{e}_* \rangle_{\mathcal{E}_*} + \langle \begin{bmatrix} \overline{w_1} H(\boldsymbol{w})^* \boldsymbol{e}_* \\ \dots \\ \overline{w_d} H(\boldsymbol{w})^* \boldsymbol{e}_* \end{bmatrix}, \begin{bmatrix} \overline{w_1} H(\boldsymbol{w})^* \boldsymbol{e}_* \\ \dots \\ \overline{w_d} H(\boldsymbol{w})^* \boldsymbol{e}_* \end{bmatrix} \rangle_{\mathcal{H}^{\oplus^d}}$$

$$= \left| \left| \begin{bmatrix} \overline{w_1} H(w)^* e_* \\ \dots \\ \overline{w_d} H(w)^* e_* \\ e_* \end{bmatrix} \right| \right|^2$$

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

- Now V₀^{*} extends uniquely to an isometry on the closure of D₀ in H^{⊕^d} ⊕ E_{*}.
- **2** Observe that for any isometric extension W of V_0^* a quick calculation shows

$$W(\overline{\mathcal{D}_0}^{\perp}) \subseteq V_0^*(\overline{\mathcal{D}_0})^{\perp}.$$

- 3 This means the one obstacle in extending to a unitary is one of dimension. That is if $\dim(\overline{\mathcal{D}_0}^{\perp}) > \dim(V_0^*(\overline{\mathcal{D}_0})^{\perp})$.
- We can resolve the problem by direct summing on a Hilbert space to the co-domain such that the dimension match.

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

• That is we extend V_0^* to a unitary

$$\mathcal{V}^* = egin{bmatrix} \mathcal{A}^* & \mathcal{C}^* \ \mathcal{B}^* & \mathcal{D}^* \end{bmatrix} ilde{\mathcal{H}}^{\oplus^d} \oplus \mathcal{E}_* o ilde{\mathcal{H}} \oplus \mathcal{E}$$

where ${\cal H}$ can be identified as a subspace of the Hilbert space ${\tilde {\cal H}}.$

2 Next will will use V_0^* , and how it acts on \mathcal{D}_0 to show for all $z \in \mathbb{B}^d$

$$F(z)^* = D^* + (\sum_{i=1}^d B_i^* z_i^*) (I_{\tilde{\mathcal{H}}} - \sum_{i=1}^d A_i^* z_i^*)^{-1} C^*$$

But first we outline an argument on why the inverse exists that we will return to later.

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

1 Fix take
$$z \in \mathbb{B}_d$$
, and define

$$Z(z) = \begin{bmatrix} z_1 I_{\tilde{\mathcal{H}}} & \dots & z_d I_{\tilde{\mathcal{H}}} \end{bmatrix} : \tilde{\mathcal{H}}^{\oplus^d} \to \tilde{\mathcal{H}}.$$

One sees that $||Z(z)||^2 = \sum |z_i|^2 < 1$.

Then since A and Z(z) just operators between Banach spaces we get

$$||Z(z)A|| \le ||Z(z)|| ||A|| < 1.$$

Systandard C*-theory we know (I_{*H̃*} - Z(z)A)⁻¹ exist in B(*H̃*) and is given by norm limit geometric series

$$(I_{\tilde{\mathcal{H}}} - Z(z)A)^{-1} = \sum_{n=0}^{\infty} (Z(z)A)^n = \sum_{n=0}^{\infty} (\sum_{i=1}^{d} z_i A_i)^n$$

Non-Commutative Setting

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

Since V^{*} is an extension of V^{*}₀ we obtain the following system of equations: Fix w ∈ B^d, e_{*} ∈ E_{*}

$$\begin{bmatrix} A_1^* & \dots & A_d^* & C^* \\ B_1^* & \dots & B_d^* & D^* \end{bmatrix} \begin{bmatrix} \overline{w_1} H(w)^* e_* \\ \dots \\ \overline{w_d} H(w)^* e_* \\ e_* \end{bmatrix} = \begin{bmatrix} H(w)^* e_* \\ F(w)^* e_* \end{bmatrix}$$

Which turns into

$$(\sum_{i=1}^{d} A_{i}^{*} \overline{z_{i}}) H(w)^{*} e_{*} + C^{*} e_{*} = H(z)^{*} e_{*}$$

$$(\sum_{i=1}^{d} B_{i}^{*} \overline{z_{i}}) H(w)^{*} e_{*} + D^{*} e_{*} = F(z)^{*} e_{*}$$
(5)

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

Solve for $H(w)^* e_*$ in the first equation to obtain

$$H(w)^* e_* = (I_{\tilde{\mathcal{H}}} - \sum_{i=1}^d A_i^* \overline{z_i})^{-1} C^* e_*$$

Substitute $H(w)^* e_*$ into the second equation to obtain

$$F(w)^*e_*=D^*e_*+(\sum_{i=1}^dB_i^*\overline{w_i})(I_{ ilde{\mathcal{H}}}-\sum_{i=1}^dA_i^*\overline{w_i})^{-1}C^*e_*.$$

Since this hold for all e_{*} we have equality in B(E_{*}), and lastly take adjoins to obtain

$$F(w) = D + C(I_{\tilde{\mathcal{H}}} - \sum_{i=1}^d w_i A_i)^{-1} (\sum_{i=1}^d w_i B_i)$$

as required.

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

(2 \implies 1) Suppose that we have a unitary colligation that realizes our multiplier *F*. Expanding $UU^* = I$ we obtain:

$$\begin{bmatrix} AA^* + BB^* & AC^* + BD^* \\ CA^* + DB^* & CC^* + DD^* \end{bmatrix} = \begin{bmatrix} I_{\tilde{\mathcal{H}}} & 0 \\ 0 & I_{\mathcal{E}_*} \end{bmatrix}$$
(6)

This in turns gives us

- $I_{\tilde{\mathcal{H}}} AA^* = BB^*$
- $I_{\mathcal{E}_*} DD^* = CC^*$
- $\bigcirc -DB^* = CA^*$

 $-BD^* = AC^*$

Connection to NC-Function Theory

References

Characterization of the Schur Class

Proof of Schur Class Characterization

Fix $z \in \mathbb{B}^d$, and we will show $I_{\mathcal{E}_*} - F(z)^*F(w) \ge 0^4$. Indeed, expand $I_{\mathcal{E}_*} - F(z)^*F(z)$, use the resolvent identity, and the four inequalities above to obtain

$$I_{\mathcal{E}_{*}} - F(z)F(w)^{*}$$

$$= C(I_{\tilde{\mathcal{H}}} - \sum z_{i}A_{i})^{-1}(I - \langle z, w \rangle)(I_{\tilde{\mathcal{H}}} - \sum A_{i}^{*}w_{i}^{*})^{-1}C^{*}$$

$$= (I - \langle z, w \rangle)H(z)H(w)^{*}$$

$$\geq 0$$
(7)

where $H(z) = C(I_{\tilde{\mathcal{H}}} - \sum z_i A_i)^{-1}$. Which concludes our proof that $||F|| \leq 1$.

⁴Showing $||F(z)|| \le 1$ not sufficient for positive kernel.

Connection to NC-Function Theory

References

Characterization of the Schur Class

Robustness of Transfer Functions

A key step in the proof was the invertibility of

$$I_{\mathcal{H}} - \sum_{i=1}^{d} z_i A_i = I_{\tilde{\mathcal{H}}} - Z(z) A.$$

- 2 All we needed was that:
 - A is a column contraction
 - $Z(z) = \begin{bmatrix} z_i I_{\tilde{\mathcal{H}}} & ... & z_d I_{\tilde{\mathcal{H}}} \end{bmatrix}$ a strict row contraction
- 3 This means that for any strict row-contraction $Z = \begin{bmatrix} Z_1 & ... & Z_d \end{bmatrix}$ where $Z_i \in \mathcal{A}$ for some operator algebra \mathcal{A} , we have invertability of

$$I - ZA = I_{\mathcal{A}} \otimes I_{ ilde{\mathcal{H}}} - \sum_{i=1}^{d} Z_i \otimes A_i$$

Connection to NC-Function Theory

References

Characterization of the Schur Class

(

Robustness of Transfer Functions

• For example suppose
$$A = \begin{bmatrix} A_1 \\ \dots \\ A_d \end{bmatrix}$$
 is a column contraction

as in the proof.

- 2 Let $X = [X_1 \dots X_d]$ be a d-tuple of $n \times n$ matrices such $||XX^*|| = ||X_1X_1^* + \dots + X_dX_d^*|| < 1$. That is assume X is a strict row contraction.
- 3 By a similar argument used at level 1 (i.e. \mathbb{B}^d), we can show that

$$I_n \otimes I_{ ilde{\mathcal{H}}} - \sum_{i=1}^d X_i \otimes A_i$$

is invertable in $M_n(B(\tilde{\mathcal{H}}))$, where \otimes denotes the Kronecker product.

Non-Commutative Setting

Connection to NC-Function Theory

References

Non-Commutative Formal RKHS

Non-Commutative Setting

The Non-Commutative Setting

Connection to NC-Function Theory

References

Non-Commutative Formal RKHS

Free Monoid on d-generators

- Fix an integer $d \ge 1$. A word of length *n* is any finite string of letters $w = w_1...w_n$ where $w_i \in \{1, 2..., d\}$.
- 2 Let 𝔽_d denote the free monoid on d generators, where elements are words, the operation is the concatenation of words, and the neutral element is the empty word Ø.
- 3 We have map from \mathbb{F}_d to itself namely **transposition** where $w^T = w_n w_{n-1} \dots w_1$.
- Given a non-commutative in-determinant $z = (z_1, ..., z_d)$, we write

$$z^{W}=z_{W_1}z_{W_2}...z_{W_n}$$

for example if $d \ge 4$, and w = 11421 we have

$$z^w = z_1^2 z_4 z_2 z_1.$$

We denote the set of all formal power series with coefficients in *E* by

$$\mathcal{E}\langle\langle z \rangle\rangle := \Big\{\sum_{lpha \in \mathbb{F}_d} f_lpha z^lpha : f_lpha \in \mathcal{E}\Big\}.$$

- 2 *E*(*z*) denotes all formal power series with finite support (i.e. polynomials).
- Given another non-commuting indeterminate
 w = (*w*₁,..., *w*_d) we denote *E*⟨⟨*z*, *w*⟩⟩ the formal power series in *z* and *w*.

Connection to NC-Function Theory

References

Non-Commutative Formal RKHS

Non-Commutative Formal RKHS (NFRKHS)

Definition

Let \mathcal{E} be a Hilbert space, and $z = (z_1, ..., z_d)$ non-commuting indeterminants. A linear subspace

$$\mathcal{H}_{\mathcal{E},\mathsf{nc}} \subseteq \mathcal{E}\langle\langle z
angle
angle$$

is called a Non-commutative Formal RKHS (NFRKHS) when:

- *H*_{E,nc} comes equipped with an inner product which turns it into a Hilbert space.
- **2** For each $v \in \mathbb{F}_d$, the map $\Phi_v : \mathcal{H}_{\mathcal{E},nc} \to \mathcal{E}$ given by

$$\sum_{\alpha\in\mathbb{F}_d}f_\alpha z^\alpha\mapsto f_{\mathcal{V}}$$

is bounded.

Connection to NC-Function Theory

References

Non-Commutative Formal RKHS

How Does Reproducing Kernels Arise?

- Since coefficients uniquely determine the power-series we obtain a standard vector valued RKHS by viewing the coefficients as functions (*f*_α) : F_d → *E*.
- Obtain a vector valued reproducing kernel

$$(\alpha, \beta) \mapsto \mathcal{K}_{\alpha, \beta} : \mathbb{F}_{d} \times \mathbb{F}_{d} \to \mathcal{B}(\mathcal{E}).$$

This induces a formal power series

$$\mathcal{K}(z, \boldsymbol{w}) = \sum_{\alpha, \beta \in \mathbb{F}_d} \mathcal{K}_{\alpha, \beta} z^{\alpha} \boldsymbol{w}^{\beta^{T}} \in \mathcal{B}(\mathcal{E}) \langle \langle z, \boldsymbol{w} \rangle \rangle$$

which is positive in a sense, satisfy a reproducing property (shown on next slide).

Connection to NC-Function Theory

References

Non-Commutative Formal RKHS

NF Reproducing Kernel

For
$$\mathcal{H} = \mathcal{H}_{\mathcal{E},nc}$$

• For fixed $\alpha \in \mathbb{F}_d$, and $e \in \mathcal{E}$ we denote
 $K_{\alpha}(z)e := \sum K_{\alpha,\beta}e \ z^{\beta} \in \mathcal{H}$

$$\mathcal{K}(\cdot, \mathbf{w}) \mathbf{e} := \sum_{lpha} \mathcal{K}_{lpha}(z) \mathbf{e} \; \mathbf{w}^{lpha^{ op}} \in \mathcal{H}\langle\langle \mathbf{w}
angle
angle$$

ß

And we have a reproducing property

$$\langle f, K(\cdot, w) e \rangle_{\mathcal{H} \times \mathcal{H} \langle \langle w \rangle \rangle} = \langle f(w), e \rangle_{\mathcal{E} \langle \langle w \rangle \rangle \times \mathcal{E}}$$
 (8)

which holds for all $f \in \mathcal{H}$, $e \in \mathcal{E}$.⁵

⁵Write out definition on black board

Non-Commutative Setting

Connection to NC-Function Theory

References

Non-Commutative Formal RKHS

NF Reproducing Kernels

Definition

We say the formal power series

$$\mathcal{K}(z, w) = \sum_{\alpha, \beta \in \mathbb{F}_d} \mathcal{K}_{\alpha, \beta} z^{\alpha} w^{\beta^{T}} \in \mathcal{B}(\mathcal{E}) \langle \langle z, w \rangle \rangle$$

is a Non-commutative Formal reproducing kernel for $\mathcal{H}_{\mathcal{E},\textit{nc}}$ when:

•
$$K_{\alpha}(z)e \in \mathcal{H}_{\mathcal{E},nc}$$
 for all $\alpha \in \mathbb{F}_d$ and $e \in \mathcal{E}$.

2 K(z, w) satisfy the reproducing property in (8).

It can be shown that each NF reproducing kernel uniquely determines a NF RKHS just (see [3] for details).

We also have multipliers in this formal setting. A formal power series

$${m F} = \sum_lpha {m F}_lpha {m z}^lpha \in {m B}({\mathcal E}, {\mathcal E}_*) \langle \langle {m z}
angle
angle$$

can act on elements in $\mathcal{E}\langle\langle z \rangle\rangle$ via a Cauchy product. That is for $f = \sum_{\alpha} f_{\alpha} z^{\alpha} \in \mathcal{E}\langle\langle z \rangle\rangle$ we define

$$\mathsf{F} \ \mathsf{f} := \sum_{\alpha} \Bigl(\sum_{\alpha = \beta \theta} \mathsf{F}_{\beta} \mathsf{f}_{\theta} \Bigr) \mathsf{z}^{\alpha} \in \mathcal{E}_* \langle \langle \mathsf{z} \rangle \rangle.$$

• Given two NF RKHS $\mathcal{H}_{\mathcal{E},nc}$, and $\mathcal{H}_{\mathcal{E}_*,nc}$ we say $F \in B(\mathcal{E},\mathcal{E}_*)\langle\langle z \rangle\rangle$ is a **left-multiplier** from $\mathcal{H}_{\mathcal{E},nc} \to \mathcal{H}_{\mathcal{E}_*,nc}$ to mean that

$$F f \in \mathcal{H}_{\mathcal{E}_*, nc}$$

for all $f \in \mathcal{H}_{\mathcal{E},nc}$.

- Again by an application of the Closed Graph theorem, and continuity of evaluation, one observe that each multipliers induces a bounded operator.
- When $\mathcal{E} = \mathcal{E}_*$ we denote $\mathcal{M}_{nc}(\mathcal{E})$ the **multiplier algebra** equipped with the operator norm.

Connection to NC-Function Theory

References

NC-Hardy Space

NC-Hardy Space

Definition

Let \mathcal{E} be a Hilbert space, and $z = (z_1, ..., z_d)$ non-commuting in-determinants. Define

$$\mathcal{H}^2_{\mathit{nc},\mathcal{E}} := \Big\{ f = \sum_{\alpha \in \mathbb{F}_d} f_\alpha z^\alpha : ||f||^2 := \sum_{\alpha \in \mathbb{F}_d} ||f_\alpha||^2_{\mathcal{E}} < \infty \Big\}.$$

• We equip $\mathcal{H}^2_{nc,\mathcal{E}}$ with the ℓ_2 -inner product induced by \mathcal{E} :

$$\langle \sum_{lpha \in \mathbb{F}_d} f_lpha z^lpha, \sum_{eta \in \mathbb{F}_d} g_eta z^eta
angle := \sum_{lpha \in \mathbb{F}_d} \langle f_lpha, g_lpha
angle_{\mathcal{E}}$$

and it follows immediately that evaluation functions are bounded turning $\mathcal{H}^2_{nc,\mathcal{E}}$ into a NFRKHS.

2 When
$$\mathcal{E} = \mathbb{C}$$
 we refer to \mathcal{H}^2_{nc} as the **"NC-Hardy space"**.

Connection to NC-Function Theory

References

NC-Hardy Space

NF Reproducing Kernel

What is the NF-reproducing kernel of $\mathcal{H}^2_{\mathcal{E}.nc}$?

- Consider $K_{\alpha,\beta} = \delta_{\alpha,\beta} \otimes I_{\mathcal{E}} : \mathbb{F}_{d} \times \mathbb{F}_{d} \to B(\mathcal{E}).$
- 2 One sees that $K_{\alpha}(z)e = ez^{\alpha} \in \mathcal{H}^{2}_{\mathcal{E},nc}$, and checks that

$$\mathit{K}_{\mathit{\mathit{nc}}}(\mathit{z}, \mathit{w}) := \sum_{lpha \in \mathbb{F}_d} \mathit{z}^{lpha} \mathit{w}^{lpha^{\intercal}}$$

satisfy the reproducing property in (8). Hence we have the NF-reproducing kernel for $\mathcal{H}^2_{\mathcal{E},nc}$.

 $\underset{000000}{\text{Connection to NC-Function Theory}}{\text{Connection to NC-Function Theory}}$

References

Characterization of the Non Commutative Schur Class

Characterization of the Non Commutative Schur Class

Theorem (Ball, Vinnikov - 2003, 2005 [3], [1])

Let $F \in \mathcal{M}_{NC}(\mathcal{E}, \mathcal{E}_*)$. The following are equivalent:

- F is a contractive multiplier.
- There exists an auxiliary Hilbert space H, and a unitary colligation

$$U = egin{bmatrix} \mathsf{A}_1 & \mathsf{B}_1 \ \cdots & \cdots \ \mathsf{A}_d & \mathsf{B}_d \ \mathsf{C} & \mathsf{D} \end{bmatrix} \stackrel{\mathcal{H}}{ \stackrel{\scriptstyle egin{smallmatrix}}{:} \oplus o \oplus \ \mathcal{E} & \mathfrak{E}_* \ \mathcal{E}_* \ \end{pmatrix}}$$

where F can be realises as a formal power series

$$F(z) = D + \sum_{i=1}^{d} (\sum_{\alpha \in \mathbb{F}} CA^{\alpha} B_{i} z^{\alpha}) z_{j} = D + C(I - Z(z)A)^{-1} Z(z)B$$
(9)

Non-Commutative Setting

Connection to NC-Function Theory

References

Characterization of the Non Commutative Schur Class

Characterization of the Schur Class continued

Theorem (Ball, Vinnikov - 2003, 2005 [3], [1])

③ The formal power series $K_F \in B(\mathcal{E}_*)\langle\langle z, w \rangle\rangle$ given by

$$K_F(z,w) = K_{nc}(z,w) - F(z)K_{nc}(z,w)F(w)^*$$

defines an NF reproducing kernel.

The colligation U that realizes F can be chosen contractive.

For $F(z) \in B(\mathcal{E}, \mathcal{E}_*)\langle\langle z \rangle\rangle$ we define $F(z)^* := \sum F_{\alpha}^* z^{\alpha^T}$, and the product is defined by Cauchy products of formal power series.

Connection to NC-Function Theory

References

Intro to NC-Function Theory

We define the row-ball

$$\mathbb{B}_{row}^{d} := \left\{ X = \begin{bmatrix} X_1 & \dots & X_d \end{bmatrix} \in \bigsqcup_{n=1}^{\infty} M_n(\mathbb{C})^{d} : ||XX^*|| < 1 \right\}$$

We have two operations on B^d_{row}. Given X, Y ∈ B^d_{row} at level *n*, and *m* respectively, and single invertable matrix S ∈ M_n(ℂ):

$$X \oplus Y := \begin{bmatrix} X_1 \oplus Y_1 & \dots & X_d \oplus Y_d \end{bmatrix}$$

$$S^{-1}XS := \begin{bmatrix} S^{-1}X_1S & \dots & S^{-1}X_dS \end{bmatrix}$$
(10)

• We say *f* is an **nc-function** on \mathbb{B}^d_{row} to mean *f* is graded, preserves direct sums, and respects similarities.

Connection to NC-Function Theory 00000

Intro To NC-Function Theory

We denote ℍ[∞]_{row} all uniformly bounded nc-functions on the the row-ball. That is nc functions *f* on the row ball such that

$$||f||_{\infty} := \sup_{Z \in \mathbb{B}^d_{row}} ||f(X)|| < \infty$$

where the norm on the right is taken in $M_n(\mathbb{C})$ when X is at level *n*.

- So For example all co-ordinate function $f_i(Z) = Z_i$ are in $\mathbb{H}^{\infty}_{row}$, and polynomials are in $\mathbb{H}^{\infty}_{row}$.
- It a well know result that for nc-functions: Locally bounded at each level implies analytic at each level. Hence it follows that every function in ℍ[∞]_{row} is analytic at every level.

Connection to NC-Function Theory

References

NC-Hardy Space As a Space of NC Functions

- We can view elements of the NC-Hardy space as nc-functions on the row ball.
- ② Given a formal power series $\sum_{\alpha \in \mathbb{F}_d} c_{\alpha} z^{\alpha} \in \mathcal{H}^2_{nc}$ one can show that for each fixed *X* ∈ \mathbb{B}^d_{row}

$$\sum_{n=0}^{\infty}\sum_{|lpha|=n}c_{lpha}X^{lpha}$$

is norm convergent in $M_n(\mathbb{C})$, where X is at level n.

Solution Define $F(X) = \sum_{n=0}^{\infty} \sum_{|\alpha|=n} c_{\alpha} X^{\alpha}$, and one uses the fact that polynomials are nc functions to show *F* is an nc-function.

Connection to NC-Function Theory

References

NC-functions and Left Multipliers

- The connection between H[∞]_{row} and Left-Multipliers of H²_{nc}, was first seen by Arias and Popescu working over the operatorial closed unit ball, and independently by Davidson and Pitts in the language of operator algebras.
- But recently Salomon, Shalit, Shamovich ([8]) formulated the result in the nc-function theory language over the row-ball.

Theorem Salomon, Shalit, Shamovich (2018) [8]

Let Φ be a nc-function on \mathbb{B}^{d}_{row} . Then Φ is a left-multiplier of \mathcal{H}^{2}_{nc} if, and only if $\Phi \in \mathbb{H}^{\infty}_{nc}$.

Connection to NC-Function Theory 000000

Conclusion

¹Although Φ is not unique, we can chose Φ to have the same norm as *F*.

Connection to NC-Function Theory $\circ \circ \circ \circ \circ \bullet$

Some Applications

- NC-Inner Outer Factorization (Jury, Martin, Shamovich [6])
- Characterization of the Extreme points of the multiplier algebra of the Drury-Averson space. (Jury, Martin, Hartz [5], [4])

Connection to NC-Function Theory

References I

- Joseph A. Ball, Vladimir Bolotnikov, and Quanlei Fang.
 "Schur-class multipliers on the Fock space: de Branges-Rovnyak reproducing kernel spaces and transfer-function realizations". In: (2006). arXiv: math/0610635 [math.CA]. URL: https://arxiv.org/abs/math/0610635.
- Joseph A. Ball, Tavan T. Trent, and Victor Vinnikov.
 "Interpolation and Commutant Lifting for Multipliers on Reproducing Kernel Hilbert Spaces". In: (2001). Ed. by H. Bart, A. C. M. Ran, and I. Gohberg, pp. 89–138.

Connection to NC-Function Theory

References

References II

- [3] Joseph A. Ball and Victor Vinnikov. "Formal Reproducing Kernel Hilbert Spaces: The Commutative and Noncommutative Settings". In: *Reproducing Kernel Spaces and Applications*. Ed. by Daniel Alpay. Basel: Birkhäuser Basel, 2003, pp. 77–134. ISBN: 978-3-0348-8077-0. DOI: 10.1007/978-3-0348-8077-0_3. URL: https: //doi.org/10.1007/978-3-0348-8077-0_3.
- [4] Michael Hartz. Every complete Pick space satisfies the column-row property. 2020. arXiv: 2005.09614 [math.FA]. URL: https://arxiv.org/abs/2005.09614.

Connection to NC-Function Theory

References

References III

- [5] Michael T. Jury and Robert T. W. Martin. Extremal multipliers of the Drury-Arveson space. 2016. arXiv: 1608.04327 [math.FA]. URL: https://arxiv.org/abs/1608.04327.
- [6] Michael T. Jury, Robert T. W. Martin, and Eli Shamovich. Non-commutative rational functions in the full Fock space. 2020. arXiv: 2010.06585 [math.FA]. URL: https://arxiv.org/abs/2010.06585.
- [7] Vern I Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge University Press, Apr. 2016.

Connection to NC-Function Theory

References

References IV

 [8] Guy Salomon, Orr M. Shalit, and Eli Shamovich. "Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball". In: *Transactions of the American Mathematical Society* 370.12 (Aug. 2018), 8639â8690. ISSN: 1088-6850. DOI: 10.1090/tran/7308. URL: http://dx.doi.org/10.1090/tran/7308.