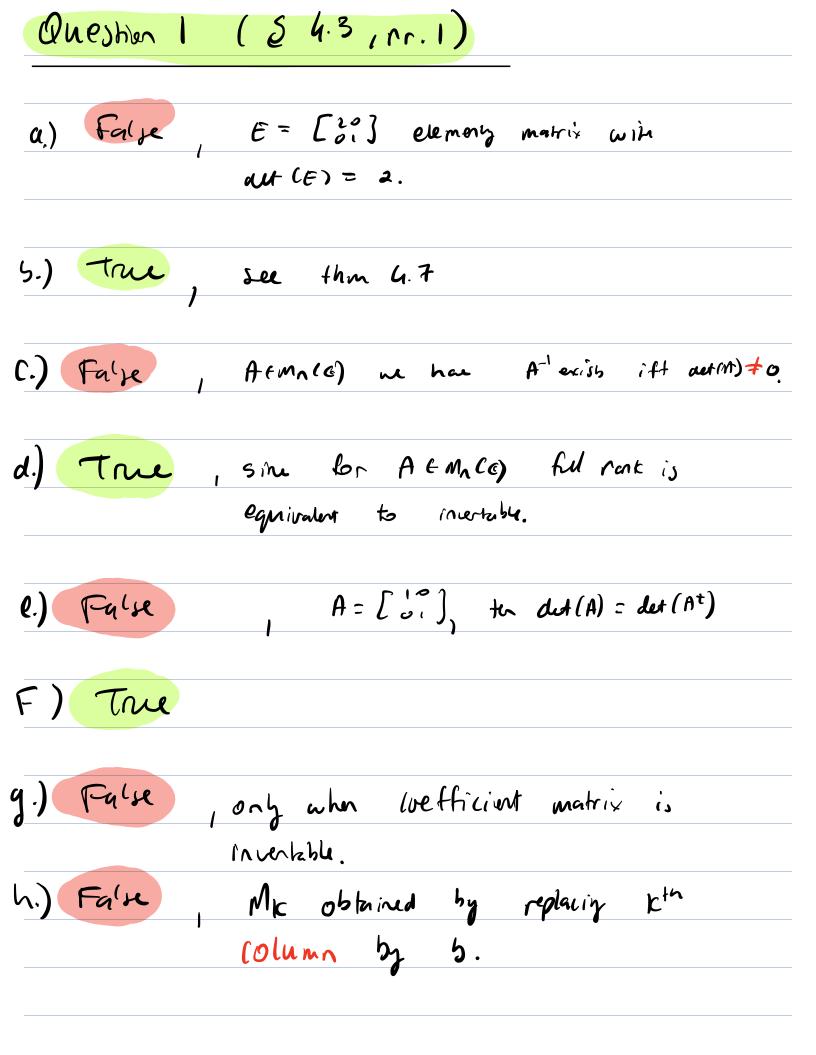
Homework 10 Due Aprilz, 2025 Solutions and Rubric 843: 1, 2, 9, 10, 12, 15, 17, 20, 21 JS.1 : 1, 4(b), 5(a), 4(a), 18(a), 21(b)



Question 2 (5 4.3, rr. 2)

Use Cromer's Rule to solve the following system's of equations: 2.) $a_{i1} x_{i} + a_{i2} x_{2} = b_{i}$ \oslash $a_{21} \chi_1 + a_{22} \chi_2 = 5_2$

Where andre - aziare = 0

$$\begin{array}{c} (\widehat{a}) & (\widehat{a}) & (\widehat{a}) \\ \hline a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \left[\begin{array}{c} \chi_1 \\ \chi_2 \end{array} \right] = \left[\begin{array}{c} 6_1 \\ 5_2 \end{array} \right] \\ \hline 5_2 \end{array} \right] \\ \begin{array}{c} \varphi_2 \\ \varphi_2 \end{array}$$

The
$$M_1 = \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{bmatrix}$$

$$\frac{A n \lambda}{2} = \frac{det(M_1)}{aut(A)} = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}$$

$$\frac{\chi_2}{2} = \frac{det(M_2)}{aut(A)} = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}$$

3.	2x,	+ x2	- 3x3	Ξ	5	
	X	- 2×2	+ χ_3	2	10	
	3x1	+ 6x2	$-2x_{3}$	2	0	
This	co be	e re writ	h Ax=b	ω μ	r	
	2 0 -2 3 (2	$ \begin{array}{c} -3 \\ 1 \\ -2 \end{array} $ $ \begin{array}{c} \chi_1 \\ \chi_2 \\ \chi_3 \end{array} $	$ = \begin{bmatrix} 5 \\ 10 \\ 0 \end{bmatrix} $			
M	1 =	$ \left(\begin{array}{ccc} 5 \\ 10 \\ -2 \\ 0 \\ 4 \end{array}\right) $	-3 / -2	۸ ₃ =	$ \begin{bmatrix} 2 \\ 0 \\ - 3 \end{bmatrix} $	1 5 2 10 4 0 }
M	2 =	2 5 0 10 3 0				
BJ	Crame	-'s Rul	u L ,			
	X1 =	$\frac{det(M_1)}{det(A)}$	$= \frac{-100}{-15}$	=		
			= <u>65</u> -15			
	x3 - ($\frac{dut(M_3)}{dut(A)}$	$= \frac{-20}{-5}$	4/3		

Question 3 (5 4.3, rr.9)

Show that an upper-triangulor nxn matrix is invertable iff all its main-diagone Ontries ore Non-zers.

P[: By exercise 23, 542 we showed $det(A) = \hat{\pi} e_{ii}$, wher A_{ii} the (i,i)only of A. Also as a consequence of the determinant being multiplicatie, ve know is invertabl. det (A) = o iff A That is That = o if A is invertible.

I

Equivaly, aij=0 Vi If A is involuble.

Question 4 (5 4.3, nr. 10)

A matrix AEMn(+) is called nilpotent to men
there exists a positive integer K s.t
$A^{k} = 0.$
Show that nilpotent matrixs have 0 det.
Pt: Indeed Using the fact that
pt: Indeed using the fact that delerminants are multiplicative us get.
let $K \in N$ s.t $A^{K} = 0$. Then
$0 = det(A^{\kappa}) = det(A) dut(A^{\kappa-1})$
= $dut(A)$. $det(A)$
$= det(A)^{\kappa}$.
=> det(A) =0
Remark i
We also should that nilpotent matrices connot

be invertable.

Question 5 (54.3, nr. 12)

Griven Q EM, (R) we say Q is Orthogonal to mean QQT = I. (These matrices are very important in numerical onalysis)

Show that if Q is onthey and, then $det(Q) = \pm l.$

 $\chi^2 = 1 =) \chi = \pm 1$. H! Indeed Sine reall 50 $det(Q)^{\tau} = det(Q) det(Q)$ 2 det. invariat war transp. = let (Q) det (Q^T) = det (QQ^T) = det (I) - ¦

=) det (Q) = 1 or det(Q) = -1

Question (24.3, nr. 13)

This next results says that the determinants of unitaris lie on the Circle. Given UEM, CC). Let u denote the matrix where we oppy complex conjugation to each orty. By U* we men (I)', the conjugate transpose of U. We say U is miting to men Uu"=1. that is ill mitmins are invertable, and un = ut. a) Show that $det(\bar{u}) = det[u]$. b) If U is mitary, then (dot (4) = 1 For a), 11=2 follow by direct computation: Assure det (ū) = det lu) maines of size n. The det $(\overline{u}) = \frac{2}{2} (-1)^{i+j} \cdot \overline{u_{ij}} \cdot det (\overline{u_{ij}})$ j inductr nypotes. $= \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}^{\infty$

For b.). Recold
$$[z]^2 = 2 \cdot \overline{z}$$
 for $\overline{z} \in \mathbb{C}$.

Recult 2x2 Remark : in lepre tachier of- a partelogn. (det (u)) as the crea Nec |det(u)|=1 men for cf paralleloym formed by What does |det(u)| = |ship the of u? Nus

Question 6 (24.3, rr. 15) This is related to define char. poy of liner mps Show that the 7:0-0 determinant does not dopend an your choice of basis. That is show that similar matrices have the some determinent. M: Sppsse AIBE M, (F) and Smiler. That is 3 invertable SEMACF) s.t $A = SBS^{-1}$ det (A) = det (SBS⁻) The - det (5) det (B) det (S-1)) ior pr $= det(S) \cdot de^{\lfloor S \rfloor^{-1}} det(B)$ 223 = det (B) as required. (Z)

Question 7 (24.3, nr. 17)

Recall that we say a field F has char. pEN to ZI=0, and pis the smillet such integr. If no such percists, live sy Fhn ther. O. Show that if AB= -BA, P, BEMA(F), Nodd, Frot characlertic Z, then A or B is not invetable. Pf: We know det (AB) = det (-BA) $= (-1)^n dut (BA)$ = - det (BA)=) det (AB) + det IBA) = 0 det (A) det (B) + det (B) det (A) = 0 -) =) 2det(A) det(B) = 0=) at least one of det(A)=0 or det(B)=0. That mere at least are of A or B not

B

invertable.

Question 8 (24.3, nr. 20.)

Suppose M & Mn (F) and con be written in block triangule form $M = \begin{pmatrix} A & B \\ O & T \end{pmatrix}$ Show that where A is square. det (M) = det (A).pf. One way to show this is to do co-factor exposión along the sottom nw Λ . $= \begin{pmatrix} a_{11} \cdots a_{1K} & B \\ u_{K1} \cdots a_{KK} & B \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$ M Sep 1: Set M(1) = M $det(M^{(i)}) = \overset{n}{\leq} (m_{nj}^{*}, M_{nj}^{*}, det(\widetilde{m_{nj}}))$ = (-1)ⁿ⁺ⁿ. M_{nn}. det (m_{nn}) $M_{nn} = 1$ = det (Mnn)

Let $M^{(2)} = M_{n_n}$ Slep 2 ! Then det $(M^{(2)}) = \sum_{i=1}^{n-1} (M^{(2)}) \cdot det (M^{(1)})$ j=1 $M_{n-1,n-1} = 1$ $= det \left(M_{n+,n+1}^{(2)} \right)$ Contine this process for l-sups when l'is the size of I in lover right book. slep 1: We and with det (m) = det (A) 0

Question a (Su.3, nr 21)

Prove that if $M \in M_{n,k} \cap (F)$ on be written in block triangular form $M = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$ when $A_i C$ square matrix, $M = \begin{pmatrix} A & B \\ O & C \end{pmatrix}$ of size $k \in n$ then $det(M) = det(A) \cdot det(C)$

Proof: See below on why Mis invertable ift main diagon blocks are invertable.

If C is not invertable, M is not =) det(m) = 0 = det(A) det(C).

If C is invertable, then $\begin{pmatrix} I & O \\ O & C^{-\prime} \end{pmatrix} \begin{pmatrix} A & B \\ O & C \end{pmatrix} \stackrel{\sim}{=} \begin{pmatrix} A & B \\ O & I \end{pmatrix}$ =) $det(c^{-1}) \cdot det(m) = det(A)$ =) det(M) = dut(A)

 $\mathcal{M}(C^{-\prime})$ - det (A) · dut (c) 3 pf: (long vesion) First show that Mis invertable iff both main diagonal blocks are inversable. Sppose Mis invertable meaning thre exists $M^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix} s_{i} + \begin{bmatrix} G & H \end{bmatrix}$ $MM^{-1} = I$ and $M^{-1}M = I$ $=) \begin{bmatrix} AE + BG & AF + BH \\ CG & CH \end{bmatrix} = \begin{bmatrix} I_{k} & O \\ O & T_{k} \end{bmatrix}$

liquation one reads of From the above • AE + BG Iĸ · AF+BH 0 • C G 0 . См Th FIRST CH=In, and Sine left inme => right inse

ve get C⁻¹ exists and legend to H. Next Sine CG=0, and C invetuble, this Mero G=O. Threfor AE+O=IK=> A inverteble, as required. Conversely, if A ad C are invertable, observe 14t $\begin{array}{c|c} A & B & T & 0 \\ \hline A & B & T & 0 \\ \hline O & C & 0 & T \\ \end{array} \begin{array}{c} A^{-1}R_{1} \\ \hline C^{-1}R_{2} \\ \hline O & I \\ \end{array} \begin{array}{c} T & A^{-1}B \\ \hline T & A^{-1}B \\ \hline O & I \\ \end{array} \begin{array}{c} A^{-1} & 0 \\ \hline O & C^{-1} \\ \end{array}$

 $\frac{F_1 - A^{-1}BR_2}{-} \left(\begin{array}{c} T & 0 \\ 0 \end{array} \right) \left(\begin{array}{c} A^{-1} & -A^{-1}BC^{-1} \\ 0 \end{array} \right) \left(\begin{array}{c} T & 0 \\ 0 \end{array} \right) \left(\begin{array}{c} C^{-1} \end{array} \right) \left(\begin{array}{c} T & 0 \\ 0 \end{array} \right) \left(\begin{array}{c} T & T \\ 0 \end{array} \right) \left(\begin{array}{c} T & T \end{array} \right) \left(\begin{array}{c} T & T \\ 0 \end{array} \right) \left(\begin{array}{c} T & T \end{array} \right) \left(\begin{array}{$

$$= \sum_{n=0}^{\infty} \left[\begin{bmatrix} A & B \\ c & 0 \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}Bc^{-1} \\ 0 & C^{-1} \end{bmatrix}^{-1}$$
Now this means if at least on
$$\frac{dt}{dt} = A \text{ or } B \text{ not inwetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ not invetable, so}$$

$$\frac{dt}{dt} = A \text{ or } B \text{ or$$

 $dut \begin{pmatrix} A & B \\ O & C \end{pmatrix} = dut \begin{pmatrix} I & BC \\ O & I \end{pmatrix} dut \begin{pmatrix} H & O \\ O & I \end{pmatrix} dut \begin{pmatrix} D & O \\ O & C \end{pmatrix}$ = $let(I) \cdot det(I) det(A) \cdot det(Z) det(I) dut(C)$ = det (A) det (C) when the second stop follows from QZO, and det $(\overline{C}_{0c}) = det (Cc)$ just a modification of proof of Oro. Z $det \left(\begin{array}{c} t \\ -l \\ t \end{array} \right) = t^2 + l$

Question 10 (SS.1)

a.) False, it append over which field you are working except [-10] has no ergonudo In R. b.) True, if Tu = XV, th T(du) = X(du) for by scale dtR. [-(o] as a squre matrix or C.) The R hav no eigen vetors, since it has no eigenvalue. liger vectors is non-zero by definition. d.) Fa'se, e.) False f.) Fase, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ has eignvalues $\lambda_1 = 1, \lambda_2 = 1$, but Z is not an eigenvalue. g.) False, conside the backward shift, on the Sequen { (90,01,) [9; ef } F vector space

 $\beta(a_0, a_1, a_2, ...) := (a_1, a_2, ...)$ The te sequer (1,1,1,...) is a reigenree, with eigenval 1. h.) True i.) True, sim if A=SBS-1, det det(tI-A) = det(tI-B)j.) False , h.) Fulse, $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, $A \begin{bmatrix} 1 \\ 0 & 1 \end{bmatrix}$, $A \begin{bmatrix} 1 \\ 0 & 1 \end{bmatrix}$ A[:] = [:], But [:] + [:] = [:]is not a sign vector sin $A \left[\left\{ \right\} = \left\{ \right\}_{i}^{2} \right\}.$

Question II (SS.1, nr 4.)

For each of the following matrices AEMAXA (F) (i) Defermine de eigenvalus of A (ii) For each eigenvalue & of A find the set of eigenvectors corresponding to X. (iii) If possible, find a basin for Fn of eigen vectors of A (iv) If succesfull in finding a basis of eigenvectos, determin on intertable matrix Q, and diagon matrix 0 = 0. (v) Compare dimensiler of eign space to multiplicity of root of eigenvalue.

$$a.) \quad A = \begin{bmatrix} 12 \\ 32 \end{bmatrix}$$

Well
$$f_{H}(t) = dt \left(\begin{bmatrix} 1/2 \\ 3/2 \end{bmatrix}^2 - tT \right)$$

$$= (1-t)(2-t) - 6$$

$$= 2 - 3t + t^2 - 6$$

$$= t^2 - 3t - 4$$

$$= (t - 4)(t + 1)$$
So eigenvalue as $\lambda_1 = -1$, $\lambda_2 = 4$

$$K_{U}(A + T) = K_{U}\left(\begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}\right) = S_{U}\left(\begin{bmatrix} 2 \\ -1 \end{bmatrix}\right)$$

$$K_{U}(A - 4T) = K_{U}\left(\begin{bmatrix} -3 & 2 \\ -3 & -2 \end{bmatrix}\right) = S_{U}\left(\begin{bmatrix} 2 \\ -1 \end{bmatrix}\right)$$
Both 1 dimensionel Kineb and observe that $2\left[\begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2/3 \\ -1 \end{bmatrix}\right]$ forms a Sessis for R^2 .
Hence A is diagonalizable and for
$$Q = \begin{bmatrix} 1 & 2/3 \\ -1 & 1 \end{bmatrix}, Q^{-1} =$$
We have $Q^{-1} A Q = \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}$

$$\begin{array}{l} h \end{pmatrix} \quad A = \left(\begin{array}{ccc} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{array} \right) \\ \hline \\ dut \left(\begin{array}{ccc} A - t \end{array} \right) \\ = & dat \left(\begin{array}{c} -t & -2 & -3 \\ -1 & -1 & -1 \\ 2 & 2 & 5 \end{array} \right) \\ \hline \\ = & \left(t \right) \ dut \left(\begin{array}{c} 1 & -1 \\ 2 & 2 & 5 \end{array} \right) \\ \hline \\ = & \left(t \right) \ dut \left(\begin{array}{c} 1 & -1 \\ 2 & 5 \end{array} \right) \\ -1 & -1 \\ 2 & 2 & 5 \end{array} \right) \\ \hline \\ = & \left(t \right) \ dut \left(\begin{array}{c} 1 & -1 \\ 2 & 5 \end{array} \right) \\ \hline \\ + & \left(-3 \right) \ dut \left(\begin{array}{c} -1 & -1 \\ 2 & 5 \end{array} \right) \\ \hline \\ = & \left(-t \right) \left[5 - t - 5 t + t^{2} t^{2} \right] + 2 \left(t - 5 + 2 \right) - 3 \left(\left(t \right) (2) - (2) (1 + t) \right) \\ \hline \\ = & \left(-t \right) \left[5 - t - 5 t + t^{2} t^{2} \right] + 2 \left(t - 3 \right) - 3 \left(-2 - 2 + 2 t \right) \\ \hline \\ = & \left(-t \right) \left[7 - 6 t + t^{2} \right] + 2 t - 6 \\ - & 3 \left(-4 + 2 t \right) \\ \hline \\ = & -7 t + 6 t^{2} - t^{3} + 2 t^{2} - 6 \\ \hline \\ = & -t^{3} + 2 t^{2} - 1 t t + 6 \end{array}$$

 $t^{3}-6t^{2}+11t+6=0$ => (t-1)(t-2)(t-3)=0

Hence eigenvalue $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

$$\frac{\text{Kr}(A-2I)}{\begin{pmatrix} -2 & -2 & -3 \\ -1 & -1 & -1 \\ 2 & 2 & 3 \end{pmatrix}} = \frac{\text{Sp}}{\left(\begin{array}{c} -1 & -3 \\ 0 & -1 \\ 0 & -1 \end{array}\right)} = \frac{\text{Sp}}{\left(\begin{array}{c} -1 & -3 \\ 0 & -1 \\ 0 & -1 \end{array}\right)}$$

$$\begin{array}{c} \text{ker} (A-3I) \\ = \text{ker} \begin{pmatrix} -3 & -2 & -3 \\ -1 & -2 & -1 \\ 2 & 2 & 2 \end{pmatrix} = 5 p \alpha \left[\begin{array}{c} -1 \\ 0 \\ 1 \\ \end{array} \right] \\ \begin{array}{c} 0 \\ 1 \\ \end{array} \right]$$

Obseri	that for Q :=	
	$Q \hat{H} Q = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$	

Question 12 (SS.1, nrs.)

Show that dl tase linear mps on objectives
For each linear mps
$$T: V \rightarrow V$$
 find the
eigenvalues of T , and an ordered basis β for
 V sit $[T]_{\beta}$ is diagond.
a) $V = R^2$, $T \begin{bmatrix} q \\ b \end{bmatrix} = \begin{bmatrix} -2a+b \\ -10a+qb \end{bmatrix} = \begin{bmatrix} -2+1 \\ 10 \\ -10 \\ q \end{bmatrix} \begin{bmatrix} q \\ b \end{bmatrix}$
 $f_T(t) = det \begin{pmatrix} t+2 \\ 10 \\ t-q \end{pmatrix}$
 $= t^2 - 7t - 18 + 10 \\ = (t-8)(t+1)$
 $= N_1 = 8$, $N_2 = -1$
 $Kar \left(\begin{bmatrix} -2 & 1 \\ -10 \\ q \end{bmatrix} - 8 \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} \right)$

$$kr\left(\begin{bmatrix}-1 & 1\\ -10 & q\end{bmatrix} + 1\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}\right)$$

$$= kr\left(\begin{bmatrix}-1 & 1\\ -10 & 10\end{bmatrix}\right) = 5pn \ 2\begin{bmatrix} 1\\ 3\end{bmatrix}$$

$$TLn \quad kt \quad \beta = \ 2\begin{bmatrix} 1\\ 0\\ 3\end{bmatrix}, \begin{bmatrix} 1\\ 3\end{bmatrix}, \begin{bmatrix} 1\\ 3\end{bmatrix}, \\ wln \quad \delta = \ 2\begin{bmatrix} 0\\ 3\end{bmatrix}, \begin{bmatrix} 0\\ 3\end{bmatrix}$$

$$Q \quad [T]_{\beta} = \ Q^{1} \ [T]_{\beta}^{\delta} Q$$

$$= \begin{bmatrix} \delta & 0\\ 0 & -1 \end{bmatrix}.$$

 $j) V = M_2(R)$, $T(A) = A^{+} + 2 + r/A) I_2$. First find Matrix of T in standard basis: $T\begin{bmatrix}10\\00\end{bmatrix} = \begin{bmatrix}10\\00\end{bmatrix} + 21!I_2 = \begin{bmatrix}30\\02\end{bmatrix}$ $T\begin{bmatrix}0\\0\\0\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix} + 0 = \begin{bmatrix}0\\0\\0\end{bmatrix}$ $\mathcal{T}[\stackrel{\circ\circ}{_{_{_{_{_{}}}}}}] = [\stackrel{\circ}{_{_{_{}}}}] + 0 = [\stackrel{\circ}{_{_{}}}]$ $T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 2 \cdot 1 \cdot I_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ One can check that T has eigen rahs 4, -1, -1, 1 and havis

Set $Q := \begin{bmatrix} 2 & - & 0 & 0 \\ 0 & 0 & - & \\ 0 & 0 & & \\ & 2 & 0 & 0 \end{bmatrix}$
to get
$Q^{-1}[\tau]_{s}^{s}Q = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$

Question 13 (SS.1, nr9.) Inplut

Question 14 (S5.1, 18)

molit -

Exercise (S s.2, nr zo) "The value of the poly for at a is det (M). let A be a non matrix with Charaleristic polynomia $f_{n}(t) = (1)^{t}t^{n} + a_{n-1}t^{n} + ... + a_{1}t + a_{0}$ Prove that $f(0) = a_0 = det(A)$ hence A is invertable iff O is not a vot q its charactershi polynomial. (Also sine Noots = eigen vole, so say 0 is a eigenvalu if $\alpha_0 = 0$,) Proof: Read that the Characteristic polynomia $f_{n}(t) = det(A - tI)$ $= (1)^{t} + a_{n-1}t^{n} + ... + a_{1}t + a_{0}$ So $f_A(0) = del(A)$ and $f_A(0) = a_0$ Hru det (A) = a.

Question 15 (SS.1, NrZI) "Characteristic Polynomics see tre trave-tras", Fix A EM, (F), a for denote cho poy. Prove that a.) $f(t) = (a_{11}-t) \dots (a_{nn}-t) + q(t)$ where $deg(g) \leq n-2$. b.) $tr(A) = (1)^{n-1}a_{n-1}$, whereeport for $f_{n}(t) = (t)^{t} + a_{n-1}t^{+} + ... + a_{1}t + a_{0}$