Homework	12	Due	April 18	2025
Solutions	and			
Rubric				
Section 6.2	; 1. , 2a. , (6. 8 . [⁶	<i>a</i> .	
Section 6.3	: ۱, ۵ ., ۲	ر . ر 6. 7. ر	10, 15.	
Grading Sc	; he me	· • •	-	

Question 6 (26.3, nr.1)

Graded

() True	, provided the underlying space is a inner product space
) False,	ony when the codomain is laimensionel.
) False,	we need the ordered basis & to be Orthonormi, to see the connection between
	adjoints and conjugate transposes.
.) True	
) False	the adjoint 4:2W)->2W) is ranjlegate linear.
) True,	Since the standard basis is O.N.
) True	•

Question 7 (S6.3, nr. 2) (Implit

Question 8 (56.3, nr.3) Graded For each of the following inner product spaces V and lineer maps T: V-V, evaluate T* at the given vector: a.) $V=R^2$, $T\begin{bmatrix} 9\\ 5\end{bmatrix} = \begin{bmatrix} 2a+5\\ a-3b \end{bmatrix} = \begin{bmatrix} 2\\ 1-3 \end{bmatrix} \begin{bmatrix} 9\\ 5\end{bmatrix}$ $x=\begin{bmatrix} 3\\ 5\end{bmatrix}$, find Tx. Taking inner produte allow us to compute T! First enly • $\langle e_{1}, \tau' x \rangle = \langle T e_{1}, x \rangle = \langle {2 \atop 1}, {3 \atop 5} \rangle$ $\frac{1}{2} = \frac{1}{2} = \frac{1}$ Hence $T'_{x} = \int_{-12}^{11} \int_{-12}^{12} = -12$

b)
$$V = C^{2}, \quad T \begin{bmatrix} 2_{i} \\ 2_{z} \end{bmatrix} = \begin{bmatrix} 2 2_{i} + i 2_{z} \\ (i-i) 2_{i} \end{bmatrix} \quad i \neq z = \begin{bmatrix} 3-i \\ 1+2i \end{bmatrix}$$

$$= \begin{bmatrix} 2 & i \\ 1-i & 0 \end{bmatrix} \begin{bmatrix} 2_{i} \\ 2_{z} \end{bmatrix}$$

$$(9mputi)$$

$$(9mputi)$$

$$= \langle \left\{ \frac{2}{1-i} \right\}, \left\{ \frac{3-i}{1+2i} \right\} \rangle$$

$$= \langle \left\{ \frac{2}{1-i} \right\}, \left\{ \frac{3-i}{1+2i} \right\} \rangle$$

$$= \langle \left\{ \frac{3-i}{1+2i} \right\}, \left\{ \frac{2}{1+i} \right\} \rangle$$

$$= \langle \left\{ \frac{3-i}{1+2i} \right\}, \left\{ \frac{2}{1+i} \right\} \rangle$$

$$= (3-i)\cdot \overline{2} + (1+2i)\cdot(1-i)$$

$$= 6-2i + (1+2i)(1+i)$$

$$= 6-2i + (1+2i)(1+i)$$

$$= 6-2i + (1+2i)(1+i)$$

$$= 5-4i$$

$$\langle e_{2,i}, T^{*}_{2,i} \rangle = \langle \overline{T}e_{2,i}, \overline{z} \rangle$$

$$= \langle \left\{ \frac{1}{1-i} \right\}, \left\{ \frac{3-i}{1+2i} \right\} \rangle$$

$$= \langle \overline{1}, \overline{1}, \overline{1}, \overline{1}, \overline{1} \rangle$$

$$= (3-i)\overline{1}$$

$$= (3-i)t-i)$$

$$= -3i-1$$
So $T^{*}\chi = \begin{bmatrix} 5+i\\ -3i-i \end{bmatrix}$
The area for shead basis is an photon in $f_{i}(R)$.

b First need to orthogonalize.

 $C \cdot J = f_{i}(R) = span 21, t3, (f_{i}3)^{2} = \int_{-1}^{1} fg,$

 $T(f) = f^{1} + 3f, \quad f(f) = 4i-2t.$

We need on orthonormal basis to compute conditions

 $udjointo, \quad using \quad train-schult \quad us \quad obtain$

 $\beta = 5 \quad \sqrt{2}, \quad \sqrt{2} \pm 3$.

Then

 $T(\frac{f_{2}}{2}) = 3 \cdot \frac{f_{2}}{2}$

 $T(\frac{f_{2}}{2}) = 3 \cdot \frac{f_{2}}{2}$

 $T(\frac{f_{2}}{2}) = 3 \cdot \frac{f_{2}}{2}$

 $T(\frac{f_{2}}{2}) = \frac{f_{2}}{2} + \frac{3f_{2}}{2}t$

Then $(\sqrt{2} + \frac{T}{2}) + \frac{f_{2}}{2} + \frac{3f_{2}}{2}t$

Then $(\sqrt{2} + \frac{1}{2}) + \frac{f_{2}}{2} + \frac{3f_{2}}{2}t$

Then $(\sqrt{2} + \frac{f_{2}}{2}) + \frac{f_{2}}{2} + \frac{f_{2}}{2}t$

busis elever = 1

Question 9 (S6.3, number 6.) Graded Turning non-selfadijut elements into somely that is felt -adjout. Given a linear operator T: V-7V on a inner produit space V. Pefrie tur neus operators $\cdot U_1 = T + T^*$ $W_2 = TT^*$ and show that U, al Uz are felt-adjud. Prouf: This follow from the basic properties of the adjoint aperator on L(V). Indeed $u_1^{\ast} = (T + T^{\ast})^{\ast} = T^{\ast} + T^{\ast}^{\ast}$ = T + T $= T + 7^*$ = 0 $U_2 = (TT^*)^*$ $= (\tau^{*})^{*} \tau^{*}$ $= T T^{-1}$ $= U_2$

(§ 6, 3, number 7.) Extm

trive a exaple of a linear operator T on a finite dimensional inner produce V sit $kr(\tau) \neq kr(\tau^*)$ Spar

 $7' R^{3} - 7 R^{3}, B = 2e_{1} e_{2} e_{3} 3 o. w.$ Consider 5mis $T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ z \end{bmatrix}$

Kolt) = spon { [;] The

[T] = [T*] 50

 $\begin{bmatrix} \mathsf{T}^* \end{bmatrix}_{\mathsf{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}^* = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $kr\left(\left[T^{*}\right]_{\beta}\right) = kr\left(\tau^{*}\right)$ $= span \left\{ \left[\begin{smallmatrix} 0\\ 0\\ 0 \end{smallmatrix}\right], \left[\begin{smallmatrix} 0\\ 0\\ 0\\ 0 \end{smallmatrix}\right] \right\}$ when = + Kr (7)

Question 10 (56.3, nr. 8) Holjont of inutable operats is just the adjoint of its inverse. Given a linear operator Ton a finite dimensional mor product space V. If T is inverteble the the invess of its adjust T" is (7 - 1) * . Obser tut (TT') = I $=) (TT')^* = I^* = I$ $=) (t^{-1})^{*} \tau^{*} = I$ al $(T^{-1}T) = I = T^{*}(T^{-1})^{*} = I$. $(-\tau^{*})^{-1} = (-\tau^{-1})^{*}$ Hu 0 Remark: For complex numbers 2 = 0, we get $(\overline{z})^{-1} = \frac{1}{\overline{z}} = \overline{(\frac{1}{z})} = (\overline{z}^{-1})$

_	

Question 11 (26.3, nr 10)

Given a linear map T:V->V on a inne product space V. Show that ||T(x)||= ||x|| for all xev iff $\angle T(x), T(y) = \langle x, y \rangle$ for $d x, y \in V$.

PNOL?	Th	CONTRA	follo	i'm medicing,	
Since	choon	y=x,	tu	Ψ×,	
٤	T(X), T	(な) こ くつ	(,2 ^c)	•	
ニ)	$\ T(\mathbf{r})\ $)(1 ² = 117			
<i>ニ</i> ノ	$\ T(\mathbf{x})\ $	= 7			
Now	Suppon	the	((7(x))(=	117×11, 4 x	€ V.
	V I				
The 4	first s	lep is to	shu	that for a	7 lineo
S-v-3	v ,	s.+ S=	S-* (selt-agrot)	عر
get	<	$S_{1}x = 0$	ßr	on zev i	plies
S = 0	٥.				

Forderd let xig EV, and observe

that

 $\zeta S(x+y), (x+y) \rangle = 0$ $= \sum (S_{x_1}x) + (S_{y_1}x) + (S_{x_1}y) + (S_{y_1}y) = 0$ => < Sy,x7 + < Sx,y7 =0 S=5×, Since < y, Sz) + < Sz, y) =0 コノ < Sx,y) + < Sx,y) =0 =) (2) = 2+2 こ) 20 2le (Sxiy) Also $\angle S(ix+y), ix+y = 0$ $I_{m}(2) = \frac{2-\overline{2}}{2}$ =) < S(ix), i2)+ < S(ix), y) + < Sy, ix) + (Sy,g) = 0 $=-i\left(\frac{z-z}{z}\right)$ =) < S(ix),y) + < Sy,ix) =0 $(S = S^*)$ < S(ix), y) + < y, S(ix) > = 0 =) => $\angle S(ix), y$ + $\angle S(ix), y$ = 0 =) i (Six), y) + i < Six), y > -0 =) i < S(x),y > -i (S(x),y)- 0

=> i ((S(x),y) - (S(x),y))20 =) 2 Tm (< S(x),y)) - 0 Sine Re (< Sx, y) = 0 ~ Tm (< Sx, y) = 0 we get CSX,y720. Since this holds for de xiger tu's meno S = O. Now if he assue ||Tx || = ||x|| trev, obser that $\zeta_{T(x)} = (x, x), \forall x$ =) by above sime $(T^*T-T)^* = T^*T-T$, we get $T^*T=T$. The $\langle T(x), T(y) \rangle$ $= \langle \chi_1 \tau^* \tau \gamma \rangle$

trigev. $= C x_{i} y 7$ E) In Thm 6.9, the linear mp 7:V->V had te sone domain ad codomain. This next Oxangle shows that this is not necessor to define adjoints.

Question 12 (S6.3, M 15) Completion

Given a linear transformation T:V->W between two more product spaces Von W. A linear 74: W-> Vis called on adjoint of T whenever <Try = <x, Ty) br di xev, yew. a) Show that T has a migne adjoint. 5) If B and & are two O.A. bases for Vad W, respectifully, the $\begin{bmatrix} \mathsf{T}^* \end{bmatrix}_{\mathsf{X}}^{\mathsf{B}} = \left(\begin{bmatrix} \mathsf{T} \end{bmatrix}_{\mathsf{B}}^{\mathsf{Y}} \right)^{\mathsf{T}}$ C.) Rank $(7) = \operatorname{Ren} k(7^*)$ d) $\langle 7^* x_i y \rangle_V = \langle x_i T y \gamma_W, \forall x \in W, y \in V.$ e) For dl VEV, $T^*T(u) = 0$ iff T(u) = 0

Proof: Fix we wy and define a linear functions V ト < TV, w>: V→ < Sine this is a linear function on V, ty Riesz Representation F! vector in V call it T*W EV s.t $\langle v, T^* \omega \rangle = \langle T v, \omega \rangle, \forall v \in \omega.$ Define T*: W-JV to be the map that sould be -> T*W. One needs to show T is liner: • Fix vectors W, WZEW. The vector T+(W1+WZ) is the only vector with the property that · Futhermore vectors T'(W1), T'(W2) his to proper $\begin{array}{rcl} +h \cdot t & \langle v_{1} T^{*}(\omega_{1}) \rangle = \langle T v_{1} , \omega_{1} \rangle & , \forall v \in V \end{array} \\ \bullet & \langle v_{1} T^{*}(\omega_{2}) \rangle = \langle T v_{1} , \omega_{2} \rangle & , \forall v \in V \end{array}$

By conjugate linearize in the second component $\langle v_{i} T^{*}(\omega_{i}) + T^{*}(\omega_{i}) \rangle = \langle v_{i} T^{*}(\omega_{i}) \gamma + \langle v_{i} T^{*}(\omega_{2}) \rangle$ $\stackrel{\text{@}}{=} \langle T v_{i} \omega_{i} \gamma + \langle T v_{i} \omega_{2} \gamma \rangle$ = LTU, W, +WZZ, VVEV Showing T*(W1)+T*(W1) Satisfy the propul 3, and sim T"(W, f Wz) is the ong vector that does, we conclude T'(W1) + T'(W1) = T"(W1 + W2) (Simila idea for scalar multiplication) For miguenso of T, it follows from the fact that (SX,y) =0 for al x,yEV implies S=0.

b.) let $\beta = \sum v_1, v_2, \dots, v_n 3$ O.N. basis for V_j and $S = \Sigma W_{1j} W_{2j} \dots j W_m 3 0.N.$ busis for ω.

· We show that the (i,j) only of [T]⁸ is <TV; w; > and the (i,j) entry of $\begin{bmatrix} T \\ T \end{bmatrix}^p \quad \text{is} \quad \langle T^* \omega_1, v_2 \rangle$ Indeel secon T'wi = ZXKVK, uniqu expansion of T'w: EV. K=1

Recall that the ith column of [7."]" the

$$\begin{bmatrix} T^{*}\omega_{i} \end{bmatrix} = \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{k} \end{bmatrix}$$

So α_{j} is the (i,j) only of $\begin{bmatrix} T^{*} \end{bmatrix}_{r}^{r}$.

. We an find of by taking the inner-product with V; ! Indeed by orthonormality $\langle T^* \omega_i, J_j \rangle = \sum d_k \langle V_{k_i} J_j \rangle = d_k$

Since
$$\langle V_{k_{j}} V_{j} \rangle = \begin{cases} 1 & , j \neq k \\ 0 & , j \neq k \end{cases}$$

In general the $(i,j)^{h}$ entry of $[T^{*}]_{\delta}^{B}$ is
 $\langle T^{*}w_{i}, V_{j} \rangle$
A similar argument shows test the $(i,j)^{h}$
entry of $[T_{\beta}^{K}]_{\beta}^{K}$ is
 $\langle TV_{i}, W_{j} \rangle$.
Here we can conclude $[T^{*}]_{\delta}^{B} = ([T_{\beta}^{K}]_{\beta})^{*}$
Since the (i,j) entry of $([T_{\beta}^{K}]_{\beta})^{*}$
 is $\langle Tv_{j}, w_{i} \rangle$ $(ontry when conj. transport)$
 $= \langle V_{j}, T^{*}w_{i} \rangle$
which is the (i,j) entry of $[T^{*}]_{\delta}^{B}$!

C.) Ronk (T') = Ronk (T) follow from
the Calculation above, and the fact
that conjugate transposing a matrix does
not change its Ronk.
Toded Ronk (T') = Ronk (
$$[T^{+}]_{p}^{p}$$
) part b.
= Ronk ($[[T^{+}]_{p}^{p}]^{*}$) joristory
does not
does not
= Ronk ($[[T^{+}]_{p}^{p}]^{*}$) component
= Ronk ($[[T^{+}]_{p}^{p}]^{*}$) component
= Ronk ($[T^{+}]_{p}^{p}$) component
= Ronk (T)
d.) We know
 $\langle Ty, x \rangle_{w} = \langle y_{1}Tz \rangle_{v}$ ($\forall y \in V, x \in W$)
= $\langle Ty, x \rangle_{w} = \langle y_{1}Tz \rangle_{v}$ ($\forall y \in V, x \in W$)
= $\langle Ty, x \rangle_{w} = \langle y_{1}Tz \rangle_{v}$ ($\forall y \in V, x \in W$)
= $\langle Ty, x \rangle_{w} = \langle y_{1}Tz \rangle_{v}$ ($\forall y \in V, x \in W$)
= $\langle Ty, x \rangle_{w} = \langle y_{1}Tz \rangle_{v}$ ($\forall y \in V, x \in W$)

e.) Firsty, if
$$T(z) = 0$$
, sin T^{4} is linear
the result follows. Converses suppose $T^{*}T(x) = 0$.
Recal the the only vector orthogonal to
every vector is the zero vector. Lett
show that our assurption implies
 $T(x) \perp W$
We decompose $W = R(T) \oplus P(T)^{\perp}$.
For $y \in R(T)^{\perp}$ then
 $\langle T(x), y \rangle = 0$ sin $T(x) \in P(T)$.
For $y \in P(T)$ we get $y = T(z)$ sin $z \in V$.
Then
 $\langle T(x), y \rangle =$

Extru: (S6.3, nr 12.)

Griven a linear operator $T: U \rightarrow V$ on an inner product space V. Then (.) $R(T^*)^{\perp} = N(T)$

2.) If V is finite dimensional, the $P(T^*) = N(T)^{\perp}$ (For dim(v)=00, $\overline{P(T^*)}^{(1-1)} = N(T)^{\perp}$)

Proof:

