Homework ?	5	Due	Feb	19	2025
Solutions Rubric	and				
2.3: 125,	3a, 4a, 9, 12				
2.4; 1, 21	e.f), 6, 9, 16, 20				
Grading Sci	heme				
- Hw courts	8 morto on Canvas				
· Spoints per	problem				
- So find s	side is $\left(\frac{score}{5^{\circ}}\right)$.				
52-3 1	Graded				
26	Not graded				
3a	Completion				
4a	Not graded				
9	Completion				
12	Completion				
824 1	Graded				
2 ecf	Graded				
6	Not graded				
٩	Graded				
16	Graded				
20	Not graded				

Question 1 (22.3, nr 1) Graded Griven vector space V, W, Z with Ordred (finite) bases &, B, K, and liner maps T:V->W and U:W->Z a.) False: Indeed, UT: V-) 7 or [UT] Matrix with columns [UT(Ui)] when ViEX. But $[T]_{J}^{B}$ is a $\dim(W) \times \dim(V)$ sized matrix, and [U]2 is a dim(2) × dim(w). So $[T]_{\alpha}^{B}[U]_{\alpha}^{X}$ red not be defined.

5.) Tru: Fided, $T: V \rightarrow W$ and $\beta = \sum w_{1}, \dots, w_{n}$ $let \quad \alpha = \frac{\beta v_1}{1}, \dots, \frac{\nu m \beta}{m \beta}, \quad \alpha = \frac{\beta}{\beta} \frac{\beta}{\nu} \frac{\nu}{\nu}$ $T(u_{j}) = \sum_{i=1}^{n} a_{i}^{(i)} w_{i}$ $\frac{1}{50} T(u) = \sum_{j=1}^{n} b_{j}^{(i)} T(u_{j}) = \sum_{j=1}^{n} b_{j}^{(i)} \sum_{j=1}^{n} a_{i}^{(i)} w_{i}$ $\frac{1}{50} T(u) = \sum_{j=1}^{n} b_{j}^{(i)} T(u_{j}) = \sum_{j=1}^{n} b_{j}^{(i)} \sum_{j=1}^{n} a_{i}^{(i)} w_{i}$ $= \underbrace{\sum_{i=1}^{n} \left(\underbrace{\sum_{j=1}^{n} q_{i}^{(j)} \right)}_{i=1} \omega_{i}^{(j)}}_{i=1} \omega_{i}^{(j)}$ So [Τ(υ)]β $\sum_{j=1}^{k} a_{i}^{(j)} b_{j}^{j}$ $\sum_{j=1}^{k} a_{i}^{(j)} b_{j}^{j}$ • Also - a, (j) . $=> \left[\tau(v_j) \right]_{v_j}^{\beta} =$ a, ^(j) nxm

so "T(T(u))" Not defined. Indeed T:V-JU f.) True Indeed A² = I implies $(A+I)(A-I) = A^2 - A + A - I = A^2 - I = 0.$ The A+I=0 or A-I=0. $J_{L} A = -I$ or A = I. g.) False: Since T:V->W abstract linea transf. while $L_A: \mathbb{C}^n \longrightarrow \mathbb{C}^n$, din(v) = n, din(v) = n. h.) False: Tala A = [01]

$$\begin{pmatrix} L_{A+B} \end{pmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{bmatrix} a_{ij} + b_{ij} \\ \vdots \\ v_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

$$= \begin{bmatrix} a_{ij} \end{bmatrix} \begin{bmatrix} v_{i} \\ j \\ v_{n} \end{bmatrix} + \begin{bmatrix} b_{ij} \end{bmatrix} \begin{bmatrix} v_{i} \\ j \\ v_{n} \end{bmatrix}$$

$$= L_{A} \begin{bmatrix} v_{l} \\ \vdots \\ v_{n} \end{bmatrix} \leftarrow L_{B} \begin{bmatrix} v_{l} \\ \vdots \\ v_{n} \end{bmatrix}.$$

Question Z (SZ.3 Z.6)

Not graded

Griven A	= [25]	B =	[3 - 2 0]
	-3 1		1 -1 4
	[4 Z]		553

 $C = \left[4 \quad 0 \quad 3 \right].$

$$A^{t} = \begin{bmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{bmatrix}$$

$$\frac{BC}{3\times 3} = \begin{bmatrix} 12\\ 16\\ 29 \end{bmatrix}$$

CB	=	27	7	٩]	
183 383		L		-	

$$CA = [20 26]$$

143 382

Question 3
$$\sum 2.3, 3(a.)$$
 Completion
Given $g(x) = 3+x$, $T: P_2(IR) - 2P_2(IR)$,
and $U: P_2(IR) - 2P_3$ linear mys,
 $T(f(x)) := f^{1}(x)g(x) + 2f(x)$
 $U(a+bx+cx^2) := \begin{bmatrix} a+b \\ c \\ a-b \end{bmatrix}$
and $\beta = \frac{2}{1,x_1x^2}$, and $\delta = \frac{2}{5} \begin{bmatrix} b \\ b \end{bmatrix}, \begin{bmatrix} b \\ c \\ b \end{bmatrix}$
a) Compute $\begin{bmatrix} U \end{bmatrix}_{\beta}^{\delta}$, $\begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta}$, $\begin{bmatrix} U T \end{bmatrix}_{\beta}^{\delta}$
directly, and compare theorem 2.11.
 $U(x) = \begin{bmatrix} b \\ -t \end{bmatrix} = 2 \begin{bmatrix} U(x) \end{bmatrix}_{\delta}^{\delta} = \begin{bmatrix} b \\ -t \end{bmatrix}$

So $\left[u \right]_{B}^{X} = \left[\begin{array}{c} 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$

$$T(x) = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right]_{\mu}^{\chi+3}$$

$$F_{0}r = T(f(x)) := \int_{0}^{1} f(x) g(x) + 2f(x)$$

$$T(x) = \frac{1}{2} g(x) + 2x = 2 \left[T(x) \right]_{\beta} = \int_{0}^{2} \frac{1}{2} \\ = 2x + 3 - 2x = 2 \left[T(x) \right]_{\beta} = \int_{0}^{3} \frac{1}{2} \\ = 3 + 3 - 2x = 2 \left[T(x^{2}) \right]_{\beta} = \int_{0}^{3} \frac{1}{2} \\ = 6x + 4x^{2} = 2 \left[T(x^{2}) \right]_{\beta} = \int_{0}^{0} \frac{1}{4} \\ = 0 \left[T \right]_{\beta}^{\beta} = \left[\frac{2}{2} \frac{3}{2} \frac{0}{0} \\ 0 - 3 - 4 \\ 0 - 0 - 4 \end{bmatrix}$$

$$O(We(K) = \left[u \right]_{\beta}^{\gamma} \left[T \right]_{\beta}^{\beta} = \left[\frac{2}{2} \frac{3}{2} \frac{0}{0} \\ 0 - 3 - 4 \\ 0 - 2 \\ 0 - 4 \\ 0 - 2 \\$$

$$= \begin{bmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{bmatrix}$$

$$UT(i) = U(z) = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$$
$$UT(z) = U(3+3z) = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$$

$$u(bx+4a^{2}) = \begin{bmatrix} 6\\ -6 \end{bmatrix}$$

$$50 [uT]_{p}^{k} = \begin{bmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{bmatrix}$$

Ð

$$Jo (UT) = [U](T)!$$

Question 4 (§ 2.3, 4a.)) Not graded Given T: M2(R)-> M2(R) by AHAAt. and $d = \{ \int_{00}^{00} , \int_{00}^{01} , \int_{00}^{00} , \int_{01}^{00}] \}$ Compute $[T(A)]_{\alpha}$ where $A = \begin{bmatrix} 1 & 4 \end{bmatrix}$ Well $T(A) = \begin{bmatrix} 1 & -1 \end{bmatrix}$ so $\begin{bmatrix} T(A) \end{bmatrix}_{\alpha} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} .$ $\begin{bmatrix} 4 \end{bmatrix}$

Question 6 (S23, nr 12) Completion Gim V, W, Z veclor spies, T, U LTS.+ $\sqrt{\frac{1}{2}} \sim \frac{1}{\sqrt{2}} \sim \frac{1$ (a) UT one-to-one =) T one to one. (b) UT onto => U onto. (c) U, T onto cd one to me => UT also. a) Sppose T(y) = T(x). The UT(y) = UT(x). By UT one-brane we get y=x. Une Tone to a. Used not be one-to-one on W, just on R(T) EW.

6) let ZEZ. Sin UT only J yEU s + z = UT(v) = U(T(v) | soU into with $U(\tau(v)) = 2$. No $R(T) \neq W$, and R(u) = R(Tu)is possible. TU C.) Assure Mod T ve one-to-one and anto! Recall <u>س (ل</u> let ZEZ. Since U is onto Fwells." UIW) = 2. Since T is onto Fuer set T(v) = UIW). Then UT(v) = U(w) = Z.

Sppre VEKer (UT). This mean UT(v) = 0 =) $T(v) \in Ker(u)$. Since U me-to-ore we know Kor (4)= 203, and here T(u) = 0, here $v \in Kr(\tau)$ Similary, sine T one-to-ore, ve get Kr(T)=203 => V=0. As required to show UT one-to-one.

Question 7 (S2.4, nr 1) Graded

Given T.J-JW linear transformation between finite dim. vspace V d w, each with on ordered basis or up, respectfully. A, B matrin.

a) False, 7 rued not be invertable.

5) true, holds for general firches.

C.) False, as firchis T and LA are Not equal sine act setues possibly diff spaces. (see poge 93.)

d.) Fa're, $M_{2+3}(F) \cong F^6$ sinc ison. iff dim er.

e) True, $P_n(\varepsilon) \cong P_n(\varepsilon)$ if n = m simdimerci are Atled Mtl.

f) False, tale $(100) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1$ A $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ B when A a 1x3 metrix al Ba 3x1 matrix g.) The sppore A invetable. The $(A^{-1})A = A(A^{-1}) = I$ The $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$.) Supp. A invertable. h) True The LA · LAI = LAA-I = LI al $l_{A^{-1}} \circ l_A = l_{A^{-1}A} = l_T$ Simily, if LA invetable, th [LA] inse for A. i) The, since A inversity indus a invetable L7 LA: C~) C~. fleu dim ((m) = din (cm) =) M=N

Question 8 (§ 2.4, nr 2 (e), (f)) Graded Determine invertability of the linear mps: e.) Given T: M2x2(R) -> P2(R) by $T \begin{bmatrix} a \\ c \\ c \\ d \end{bmatrix}$:= $a + abx + (c + d)x^{2}$. Not invertable, Sine $dim(M_{Z_{r2}}(R)) = 4$ and $dim(P_{Z}(R)) = 2+1 = 3$. Since Tis linear, ils sufficient to test invertability by looks at dimension. f.) $T: M_{2\kappa_2}(\mathbb{R}) \longrightarrow M_{2\kappa_2}(\mathbb{R})$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \longrightarrow \begin{bmatrix} a + b & q \\ c & c + d \end{bmatrix}$ What is Ker (T)?

 $A = \begin{bmatrix} a & 5 \\ c & d \end{bmatrix} \in \operatorname{Ker}(T)$ a+b=0

a =0 =) a=0 C=0 => 5=0 С -0 C+c = 0

The $ker(7) = 203 \implies inject.$ Sine T mips between som spaa, ue get R(T) = M_{2×2}(R) =) Svjelhve.

Hence Tir invertable.

									V
Show	that	if	A	is	<i>6</i> 1	inve	erta ble	٧x	^
natrix		cad	AB	3=0	> /	tLen	B=	0.	
Indeed		A -1	(AB)	11	A-1C) =	0		
	=)	B		=	0,				

ſ

Question 10 (82.4, nr.7) anded Given nxn matrices A, B. Show a) 27 AB=I, the A and B are incertable. hell concia LA, LB: F^->F^. We know LAOLE = LAE = LI = In. Showing that LALB is one to -one. By exerie 12 a), we get LB is me-to-one. Then LB: C^->C invertable, by rak-nullig. Knu [LB]=B murbyle as matris. Simily idea when using LALB onto to get LA onto => LA invehible by rank nalm. Vere [LA] = A inversel. Henn A-1, and B-1 exists and $(AB)(B^{-1}A^{-1}) = (B^{-1}A^{-1})AB = J$ to show (AB)⁻¹ = B⁻¹ A⁻¹.

b) tala (100) (1)=1
$\left[\begin{array}{c} \circ\\ \circ\end{array}\right)$
A= (100)
$\frac{B}{\left(\begin{array}{c}l\\0\\0\end{array}\right)}$
$AB = I_{ x }$
a.) 4 points
b.) l point

Question 11 (S2.4, nr 16) Graded let BEMn(C) and invertable. Define $\overline{\Phi}: M_n(\overline{c}) \longrightarrow M_n(\overline{c})$ by $\overline{\Phi}(A) := B^{-1}AB$. Show that I is an isomorphism of vector spaces. Proof : To show linearly observe that $B^{-1} | \alpha A + C \rangle B = (\alpha B^{-1} A + B^{-1} C) B$ $= \alpha B^{-1}AB + B^{-1}CB$ And for invertability, observe that $\overline{T}'(A) = BAB^{-1}$. Indeed sine B-(BAB-1)B = A. I

Question 12 (S2.4, nr 20) Not graded let T:V-JW lineo trunsf. between vector spaces of size A ad m, and ordered basis B ad & respectfy. Show that for $A = [T]^{b}$ that 1.) Rank(T) = Rank(LA)z.) dim (Ker(7)) = dim (Kr(LA))_____, V ω ₽₆ L·J₈ $\overline{\mathcal{P}}_{\beta}^{+} = [\cdot]_{\beta}$ し_A _____フ F^ FM where $\overline{\Phi}_{\beta}: V \rightarrow F^{\circ} \quad \text{Edivi} \mapsto \begin{bmatrix} d_{i} \\ k_{n} \end{bmatrix}$ isomorphism. Know $L_{A}^{\circ} \overline{\Phi}_{B} = \overline{\Phi}_{F}^{\circ} T (\overline{*})$ We =) $L_{A} = \overline{\Phi}_{k} \circ T \circ \overline{\Phi}_{B}^{-1}$

() Show dim $(R(L_A)) = \dim(R(T))$. Well observe that $F^{n} = \overline{\Phi}_{B}^{-1}(V)$. So $L(F^{n}) = L(\overline{\varphi}_{B}^{\neg}(v))$. So rank (L) = rank (Lo $\overline{\Phi}_{\beta}^{+}$) And since Ir isomosphis, we get $d_{im}\left(L^{\circ} \overline{\Phi}_{\beta}^{-1}(v)\right) = d_{in}\left(\overline{\Phi}_{\beta}^{\circ} L^{\circ} \overline{E}_{\beta}^{-1}(v)\right)$ $= din\left(T(U)\right)$ =) rock $(L \circ \overline{\Phi}_{\beta}^{+}) = rock(T)_{j}$ as requel. 2) Next observe that $\ker(L_A) = \overline{\Psi}_{\beta}(\operatorname{Ker}(T))$ ² Also dim $(\overline{d}_{1}|kr(T)) = dim(kr(T))$

Sinc \$\$\$ isomorphic. Forl $\chi t \Phi_{\beta}(k(T)) =) \chi = \Phi_{\beta}(v)$ T(v) = 2. $L_A(x) = L_A \circ \overline{f}_B(v)$ Tru $= \overline{\Phi}_{\delta} \circ \overline{f}(v)$ 0 $\Rightarrow \chi t K (L_A).$ Convesel, if XE Ker (LA), then set $V := \overline{\Phi}_{B}^{-1}(x)$, and objer $\overline{\Phi}_{\mathcal{F}} \circ T(V) = L_{\mathcal{F}} \circ \overline{\Phi}_{\mathcal{B}}(V)$ = (x)= 0 一) 更y(Tlv)) =0

=)	$\mathcal{T}(\mathbf{v})$	-0	Sim	\$	[1].	
Tb	X =	₹B($\overline{\mathfrak{F}}_{\beta}(x)$	1 w	$V = \mathcal{F}_{\mathcal{B}}^{\mathcal{H}}(\mathbf{x})$	> <i>e</i> 炸(т)
						Ð

This Result says that isomorphism leave dimensions inchanged. 82.4, nr 17; a linear my between let $T: V \rightarrow W$ finite dimensional vector space, and $V_o \subseteq V.$ If T is an isomorphism, then dim (T(Vo)) = dim (Vo). Prof: let V,..., Un be a basis for Vo. We claim {T(v1), T(vn)} is a basis for TlVo). . Indeed, suppose =) Žx; v; EKor(T) = E03 =7 $\Xi divi = 0$ =) di=...= xn=0, by 62 g

 $\xi J_{i_1,\ldots,v_n}$ Here 27(V,),.., TIVn) 3 is lineary independent. · Futhermore let y ET(Vo). By surjectivity, $\exists v \in V_0 \quad s, \notin y = T(v)$ = T(ZB; V;) = ZB; 7(v;) as required to show ET(U,), ..., T(Un) 3 Spans