Name:

Solutions

MAC 2311 - Analytical Geometry and Calculus I

Quiz $# 3$, September 14, 2023

Problem 1 *Find the real number a such that the function f defined below is continuous on* $(-\infty, \infty)$ 5 points

$$
f(x) = \begin{cases} ax^2 + 2x, & \text{if } x < 2 \\ x^3 - ax, & \text{if } x \ge 2 \end{cases}
$$
 (1)

Start by finding a such that

$$
\lim_{x \to 2^{-}} f(x) = f(2) = \lim_{x \to 2^{+}} f(x)
$$

$$
\left(\log \frac{1}{2} \right) = \log \frac{1}{2} \cdot 3 \cdot (2) = 2
$$

 $\lim_{x\to 0^-} \int_{x}^{1} \frac{1}{x} \sin \theta \cos \theta dx = a(1)^2 + b(2) = 4a + 4$ 11 point)

$$
\lim_{x\to 2^+} \frac{1_{\text{point}}}{(x)} = \lim_{x\to 2^+} x^3 - ax = (x)^3 - a(x) = -2a + 8 \qquad (1 \text{ point})
$$

We would a such that
$$
\lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x)
$$

There for ue^{ne0} a such that

$$
\varphi q + \varphi = -\lambda \mathsf{a} + \vartheta
$$

$$
=)
$$
 6a $=$ 4

$$
a = \frac{4}{6} = \frac{2}{3}
$$

Then $\alpha=\frac{2}{3}$ satisfy $\lim_{x\to a} f(x) = f(a)$.

Proof A	2. $Solu h \circ n$	(S points)
$Giv \circ n$	$f(x) = \sqrt{x+1}$	f and the derivative f f using the definition.
$Fo(x - x > 1)$	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
$\frac{1}{h \circ o} \frac{\sqrt{x+h+1} - \sqrt{x+1}}{h}$	$(f o)^{n+1}$	
$= \lim_{h \to 0} \frac{f(x+h+1) - (x+1)}{h}$	$(\frac{f(x+h+1) + f(x+1)}{h(x+h+1) + f(x+1)})$	$(1 \rho_0 n)$
$= \lim_{h \to 0} \frac{f(x+h+1) - (x+1)}{h(x+h+1) + f(x+1)}$	$(f o)^{n+1}$	
$= \lim_{h \to 0} \frac{f(x+h+1) - f(x+1)}{h(x+h+1) + f(x+1)}$	$(f o)^{n+1}$	
$= \lim_{h \to 0} \frac{1}{\sqrt{x+h+1} + f(x+1)}$	$(f o)^{n+1} - 0$ where $f u \neq 0$	
$= \frac{1}{\sqrt{x+1} + f(x+1)}$	$(f o)^{n+1} - 0$ where $f u \neq 0$	
$= \frac{1}{\sqrt{x+1} + f(x+1)}$	$(f o)^{n+1} - 0$ where $f u \neq 0$	

Not or quizadded hor prectise.

Problem 2 Let f be a differentiable function. Recall that the derivative of f at a point x in the domain of f is

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

Find the derivative of

$$
f(x) = \sqrt{x+1} - x^2
$$

using the definition of the derivative. Marks will not be allocated if differentiation rules are used.

$$
\oint_{0}^{1}(x) = \frac{\int_{\left(x+h\right)}^{1}(x+h) - \int_{0}^{1}(x)}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h)^{2} - \int_{0}^{1}(x+h) - x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h)^{2} - \int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h)^{2} - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h)^{2} + \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= -2x + \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= -2x + \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= -2x + \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
= -2x + \frac{\int_{0}^{1}(x+h) - \int_{0}^{1}(x+h) + x^{2}}{h}
$$
\n
$$
=
$$