Discussion Notes 4

February 06, 2024

First recall how to work with exponents:	
For x,y, a,b real number, x=0.	
1) $y^{2} = 1$ 6) $\sqrt{x}^{2} = x^{2}$	
2) $\frac{1}{x^{\alpha}} = x^{-\alpha}$ $7) \sqrt[6]{x} = x^{-\alpha}$ $($	Λ=1, Z, 3,
3) $y^{a} y^{b} = y^{a+b}$	
$4) \frac{\chi^{q}}{\chi^{e}} = \chi^{q-b}$	
$5)(x^{a})^{b} = x^{ab}$ O_{i} (feentiation)	
constant Rule Rules Sum Rule	
$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}(f(x)) \qquad $	l g
Power Rule Exponential rule a>0 ord a=1.	
$\frac{d}{dx}(x^n) = nx^{n-1} \qquad \qquad \frac{d}{dx}(\alpha^x) = \alpha^x \cdot \ln(\alpha^x)$	(a)

$$\begin{array}{r} (\alpha) \quad f(x) = \ 15x^{100} - 13z^{12} + 5z - 46 \\ (b) \quad g(x) = \ 8z^3 - \frac{1}{3z^5} + z - 23 \\ (c) \quad T(y) = \ y + \ 9^3y^7 - \frac{2}{5y^2} \\ \end{array}$$

$$\cdot d) h(z) = z^{\pi} - x^{5z}$$

(e)
$$k(t) = 3t^2(2t-t^2)$$

$$f(z) = \frac{2t^{5} + t^{2} - 5}{t^{2}}$$

Examples (Exponential Rule)
$$e \approx 2.71...$$

1) fix) = e^{x} s) $h(t) = t^{e}$
2) $g(x) = e^{x+5}$
3) $h(x) = e^{2}$
4) $k(t) = \sqrt{et}$

Example' Find the equation of the tragent line to
the graph of k where
•
$$k(t) = \sqrt[3]{t^2} (\partial t - t^2)$$

at the point $t = 1$.
Solution: Step(: Find the slope of the tangent line:
• $t(t) = t^{\frac{1}{3}} \cdot (\partial t - t^2) = \partial t^{\frac{5}{3}} - t^{\frac{5}{3}}$
 $\frac{dk}{dt} = 2 \cdot \frac{5}{3} t^{\frac{5}{3}} - \frac{5}{3} t^{\frac{5}{3}}$
The $\frac{dk}{dt}\Big|_{t=1} = \frac{2}{3} \cdot \frac{5}{3}(1)^{\frac{3}{3}} - \frac{8}{3}(1)^{\frac{5}{3}}$
 $= \frac{5}{3} - \frac{5}{3} t^{\frac{5}{3}} - \frac{5}{3} t^{\frac{5}{3}}$
The $\frac{dk}{dt}\Big|_{t=1} = \frac{2}{3} \cdot \frac{5}{3}(1)^{\frac{3}{3}} - \frac{8}{3}(1)^{\frac{5}{3}}$
 $= \frac{5}{3} - \frac{5}{3} t^{\frac{5}{3}} - \frac{5}{3} t^{\frac{5}{3}}$
The $\frac{dk}{dt}\Big|_{t=1} = \frac{2}{3} \cdot \frac{5}{3}(1)^{\frac{3}{3}} - \frac{8}{3}(1)^{\frac{5}{3}}$
 $= \frac{27}{3} c - 50pe$
Step2: Find a point (x_1, y_1) on the tangent line.
• Next we know that the tangent
line must pass through the
point $(1, k(1))$.
• Meaning $y - k(1) = \frac{2}{3}(t-1)$ is the eq.
Find $k(1) = 1 \cdot (2-1) = 1$ (y)
So $y - 1 = \frac{2}{3}(t-1) = \frac{2}{3}t - \frac{2}{3}$
 $= 2\int y = \frac{2}{3}t + \frac{1}{3}$

Question (Slopes of targent lines) Find the equation of the targent line to f(x) = 42 - 8Jx at x = 16

