Discussion		class
Lecture	(१	and 20

Last time

- Related rates
- Linear approximation

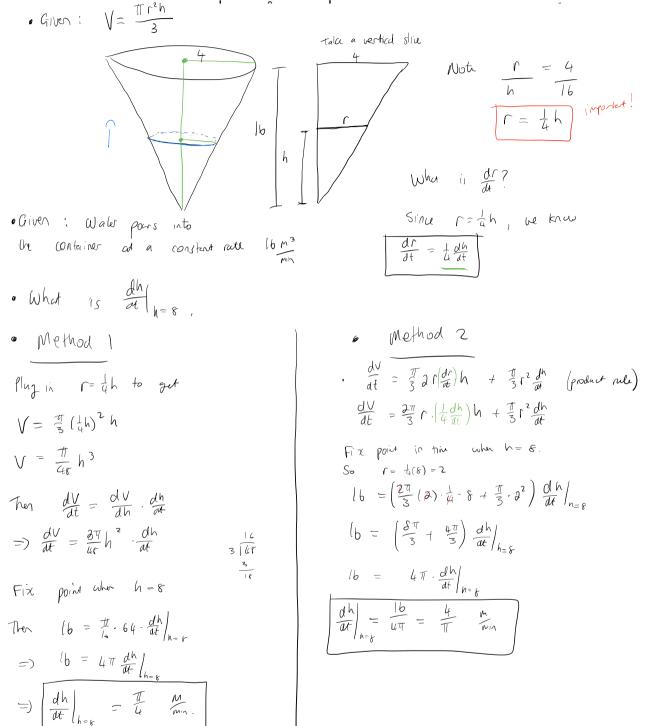
Today - Differentials - Extreme Values. (Important topic)

• Review : Problem S, Exam Z
- Nulls: ① radius is changing So
$$\frac{dr}{dt} \neq 0$$

③ deeded \neq use $\frac{h}{r} = \frac{lb}{4} = 2r = \frac{l}{a}h$
of $V = \frac{1}{3}\pi r^{2}h = \frac{1}{3}\pi (\frac{l}{a}h)^{2}h$

Exam 2 : Problem 5

5. A container in the shape of a right circular cone with vertex pointed down has radius 4 m and height 16 m. If water is poured into the container at a constant rate of 16 m^3/min how fast is the water level rising when the water is 8 m deep? Note: The volume of a cone formula is $V = \frac{\pi r^2 h}{3}$.



· Extreme Values: Given a function f: (R-) R: · Global Absolute maximum and minimum? · Lord maximum and MINIMUM - Local maximum: f attains a local maximum at c it there exists an open interval I contained in the domain & f st f(c)» f(x) for every x e Z. - Local Minimum of attains a local minimum of c it ther exists an open interval I contained in the domain of f st files (x) for every x e Z. · Extreme value theorem: - If f is continuous on a closed interval Earby, then f obtains its maximum and minimum on Ea16]. · Critical number / value - A number c in the domain of f is called a Critical value of f provided fic) = 0 or fic) DNE. · Fermats thm - If fhas a local extrema at x=c, and if f'(c) exists, then f'(c) = 0. • Important: If I has a local extrema at x=c, then c is a critical number. . That is a being a critical number is a necessary Condition for i to have an extreme value at c. · We want to find extreme values. Fermat's theorem tells us we only have to look through the critical values to find local extrema. What about global extrema?

$$E \times anple S: Find Critical numbers f
i) $f(0) = (0S(0) + Sin^{2}(0))$, on $E_{0,2\pi}$
i) $f(0) = -\chi^{-2} \ln (2)$, on $(0,0)$
i) $g(0) = 40 - ta 0$, on $E_{0,2\pi}$$$

1)
$$f'(0) = -\sin \theta + 2\sin \theta \cdot \cos(\theta)$$

The $-\sin \theta + 2\sin \theta \cdot \cos \theta = 0$
=) $(-\frac{1}{2} + (\cos \theta) (\sin \theta) = 0$
=) $(-\frac{1}{2} + (\cos \theta) (\sin \theta) = 0$
=) $(-\frac{1}{2} + (\cos \theta) (\sin \theta) = 0$
And $(\cos \theta = \frac{1}{2} =)$ $\theta = \frac{\pi}{3}, \quad \theta = \frac{5\pi}{6}$

2)
$$f'(x) = -2x^{-3}\ln(x) + x^{-2} \cdot \frac{1}{2} = -\frac{2\ln(x)}{x^{3}} + \frac{1}{2^{3}} = \frac{1-2\ln(x)}{x^{3}}$$

• $x = 0$? Not included in ($\partial_{1}o^{0}$) so not a critical point.
• $(-\partial_{1}n(x) =) \quad [n(x) = \frac{1}{2} =) \quad e^{(n(x))} = e^{\frac{1}{2}} =) \quad x = e^{\frac{1}{2}}$

3)
$$q^{1}(0) = 4 - \sec^{2}(0)$$

Solve $4 - \sec^{2}(0) = 0$
 $= 3 - \sec^{2}(0) = 4$
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$
Note i g not defined
 $e^{-1} - 2 = 3 - \cos^{2}(0) = -\frac{1}{2}$

 $f(0) = 0 \qquad f(0) = 0 = t_{0}^{-1}(0) = 0$ $f(1) = 1 - 2 \cdot \frac{\pi}{4} = 1 - \frac{\pi}{2} \le 0 \qquad (absolute min et 1)$ $f(4) = 4 - 2 \cdot t_{0}^{-1}(4) > 0 \qquad (absolute max et 4)$

Example:
$$g(0) = 40 - \sec^{2}(0)$$
 on $Eo_{1}2\pi$
Find critical point.
Note g rot defined when $(05(0) = 0, 0 = \frac{\pi}{2}, \frac{\pi}{2}$.
Now $g'(0) = 4 - 2\sec^{2}0 \cdot \tan 0$
 $g'(0) = 4 - 2\sec^{2}0 \cdot \tan 0$
 $=> 2 - \sec^{2}0 \cdot \tan 0 = 0$
 $=> 2 - \sec^{2}0 \cdot \tan 0 = 0$
 $=> 2 - \sec^{2}0 \cdot \tan 0 = 0$
 $=> 2 - \sec^{2}0 \cdot \tan 0 = 0$
 $=> 2 - \sec^{2}0 \cdot \tan 0 = 0$
 $=> 2 - \sec^{2}0 \cdot \tan 0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan 0 - \tan^{2}0 = 0$
 $=> 2 - \tan^{2}0 + \tan^{2}0 + \tan^{2}0 = 0$
 $=> 2 - \tan^{2}0 + \tan$

$$\frac{(bahinved!)}{S_0} = 0$$

$$= 3 (x-1)(x^2 + x+2) = 0$$

$$x-1 = 0 = 3 bn (0-1 = 0 = 3) 0 = \frac{\pi}{4}, \frac{5\pi}{4}$$

$$x^2 + x+2 = 0 = 3 \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= 3 \quad x = \frac{-1 \pm \sqrt{1^2 - 4(1)(2)}}{2}$$

$$= 3 \quad x = \frac{-1 \pm \sqrt{1^2 - 4(1)(2)}}{2}$$

$$= 3 \quad x = \frac{-1 \pm \sqrt{2}}{2} \cdot \frac{1}{2} = \frac{-1}{2} \pm \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$
So for (0) = $-\frac{1}{2} \pm \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$, and since for 0 ulques only real numbers , no 0 clR subtry this.

Home the only two critical points are

$$T_{4}$$
, 57
 T_{4} .