Discussion Class

Novembeziatastpitffentials Lia Extreme Values 2207

ThatMean Value Theorem ¹²²¹¹ 1st Denvahi Test L2 Concavity and 2nd Derivative test ²²³

Thm:	IF	$f: [a_1b_3] \rightarrow R$	(continuous on $[a_1b_3]$)	
and	di	ferenrichable	on (a_1b)	and $f(a) = f(b)$
then	the $exish$	$c \in (a_1b)$	$s \cdot f$	$f'(c) = o$
Then:	It	$f: [a_1b] \rightarrow R$	continuous	on $[a_1b]$
and	di	di	$(enohid)$	then
then	$exish$	ce	(a_1b)	g
there	$exish$	ce	(a_1b)	g
then	$\sqrt{c} = \frac{f(b) - f(a)}{b - a}$			

Intuitively If f represents velocity it means over ^a time intend cab the average velocity and instantaneous velocity coincide at at least one point in time

• Think about if the this:

\n
$$
-1\frac{1}{3} \text{ average} \qquad 100 \text{ mph from time}
$$
\n
$$
0 + 6 + \text{time} \qquad 1 \text{ hour } , \qquad 100 \qquad \text{time}
$$
\nwhere 1ms have been at

\n
$$
100 \text{ syst} \qquad 0 \text{ nR} \qquad 0 \qquad \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\n
$$
100 \text{ mph} \qquad 0 + \text{time}
$$
\

 $\frac{1}{200}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $\sqrt{2}$

Example	Use the mean Value theorem to show that	for any real numbers	$a < b$
we have	$-1 \leq \frac{(cos(b) - cos(a))}{b-a} \leq 1$.		

- To use the MVT we need 1) a function and z) an interval.
- · Consider the interval $[a,b]$ and function $f(x) = log(x)$.

why can we apply mut Then there exists ^a in carb sit f'a ^t That is since ¹⁰⁵⁵ 911

$$
T_{Mn} \qquad \left|\begin{array}{c} \cos(b) - \cos(a) \\ b - a \end{array}\right| = |-sin(c)| \leq |
$$
\n
$$
\Rightarrow \qquad -| \leq \frac{cos(b) - cos(a)}{b - a} \leq |
$$
\n
$$
as \qquad nq \qquad \text{and} \qquad s
$$

Exercise 1:

\n
$$
f(1) = \sum_{i=1}^{n} x_i - 2
$$
\n
$$
f(-1) = \int_{0}^{3} (x)^{2} dx = 2
$$
\n
$$
= \int_{0}^{3} (1)^{2} dx = 2
$$
\n
$$
= \int_{0}^{3} (1)^{2} dx = 2
$$
\n
$$
= \int_{0}^{3} (1)^{2} dx = 2
$$
\n
$$
= \int_{0}^{3} (1)^{2} dx = 2
$$
\nBut

\n
$$
f'(x) = \frac{2}{3}x^{\frac{1}{3}} + 0 \text{ for any } x \in L^{2}(1) \setminus \{0\}.
$$
\nThis does not contain the following equations:

\n
$$
f'(x) = \int_{0}^{3} x^{\frac{1}{3}} dx = 0 \text{ for any } x \in L^{2}(1) \setminus \{0\}.
$$
\nThis does not contain the following equations:

\n
$$
f'(x) = \int_{0}^{3} x^{\frac{1}{3}} dx = 0 \text{ for any } x \in L^{2}(1) \setminus \{0\}.
$$

Excised If ^f ²⁷ ² F'in it for ^K in 2,5 Howswell can fist be Sppore f satisfy hypothesis of MVT Then there exists ^C in 12,51 St flea ^f i fists Th f4711 ⁷¹⁵⁷ 3 21 ⁷¹⁵⁷ ⁷ ³ fly Fcs 7,3 2 1 So fist at least I

Exercise 3: Suppose of is an odd tunction which \int differentiable on $(-\infty,\infty)$. Show for a $>$ there is some x in $(-a_1a)$ st $f'(a) = \frac{f^{(a)}}{a}$. Apply mut since f cont. an Coral to get C_1 in $(0, a)$ st $\int_1^1(c) = \frac{A^{(n)}}{a}$.

Exercise 4:
$$
0_{0}e_{3}
$$
 there exists a function 1 such that
\n \cdot f(c) = 4
\n \cdot f(c) = 6
\n \cdot f(d) 6
\n \cdot f(d) 6
\n \cdot f(e) = 7
\n \cdot f(c) = 3
\n \cdot f(c) = 3
\n \cdot f(c) = 1
\n $\$

$$
\mathbf{2}^{\prime}
$$

But then $\frac{f(2) - f(0)}{2} = \frac{4 - (-1)}{2} = \frac{3}{2}$ But $f'(c) \leq 2$ which cannot happen s_{1} s_{2}

 s s s t e_{xi} ;

Example 7 :
$$
4\pi x = \frac{32}{2243}
$$
 (see $q_{10}y =$)
\n**Example 7** : $4\pi x = \frac{32}{243}$ (see $q_{10}y =$)
\n**Example 8 6** Find that the following:
\n**6 7 3 6 6 8 7 10**

And g is strictly decreasing on $(-\infty, \frac{-\ln(n)}{3})$.

(b)

\nand

\n
$$
\begin{pmatrix}\n0 & \text{has local} & \text{other real} & \text{other real} \\
0 & \text{other real} & \text{other real} \\
0 & \text{other real} & \text{other real}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{In addition} & \text{point 0: } 9 & \text{to the 0} \\
0 & \text{in the 1} & \text{other real} \\
0 & \text{out the 2}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 2} \\
0 & \text{in the 3} & \text{in the 4} \\
0 & \text{in the 5}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 1} \\
0 & \text{in the 4} & \text{in the 5}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 1} \\
0 & \text{in the 1} & \text{in the 5}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 1} \\
0 & \text{in the 6}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 1} \\
0 & \text{in the 1}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 1} \\
0 & \text{in the 1}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 1} \\
0 & \text{in the 1}\n\end{pmatrix}
$$
\nand

\n
$$
\begin{pmatrix}\n0 & \text{in the 1} & \text{in the 1} \\
0 & \text{in the 1}\n\end{pmatrix}
$$

1⁵⁺ Derivative Test

f increasing for every $x_1 < x_2$ we have $f(x_1) \n\t\leq f(x_2)$ f decorasing: for every $x_1 < x_2$ we has $f(x_1) > f(x_2)$

Proposition	Suppose	$f: I \rightarrow R$	i	a	d f e	f f h																																																					
• $1f$	$f(x) > o$	h	x	x	1	f	f	h	f	h	f	h	h	1	h	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	<

Main Questions Tarmininteral where functions are increasing Using derivatives to classify local extrema

Proposition Suppose that ^C is ^a critical number of ^a continuous function f ¹ If f charges from to ⁰ th f has ^a local max at ^c ² If ^t charges from ^O to then f has ^a local min at ^c o

Concavity and test

$$
\frac{dy}{dx}
$$
: $\int \cos (x) \, dx$ $\int \cos x \, dx$ $\int \sin x \,dx$ $\int \sin x \,dx$

luf Ionlaire down : Graph of f les belou
tingent line (f'ix)
$$
\leq 0
$$

other: In the chosen point:

\nA point
$$
P = (C, f(c))
$$
 is could an in the chain point to mean.

\nof its continuous at C and

\nof the domain of C and

\nof the domain of C .

Think about $f(x) = x^3$ a $g(x) = e^{x}$ • $h(x) = \sin(x)$ $(k(x) = \frac{1}{x})$

> Ask about the following for f, g, h, k : 1) Where is the function increasing and decreasing. 2) what are the local and global extrema? C -local min, mox, and global min, mox) 3) What are the intervals where the function 15 concave up, concave down ⁴ Where lit ay ^I are inflection points

