MAC 2311 - Analytical Geometry and Calculus I

Quiz # 11, November 16, 2023

This quiz is graded on completion and 10/10 is awarded for attempting problems and attending today's discussion class. No make-ups are allowed for quiz 11. You are not expected to solve all these problems within the discussion class. The intention is to provide additional practice material.

Problem 1 .

Find the anti-derivatives of the following functions. Use C to denote the constant.

1.	$(x^2-1)^2$	
2.	$\sqrt{\frac{3}{z}}$	
3.	$\frac{4+u^2}{u}$	
4.	$cos(oldsymbol{ heta})$	Antiderivature are unique up to a constext. But (0500
5.	$-2cos(\theta)sin(\theta)$	But
6.	$cos(\theta)sin(\theta)$	« (05 ² 0
7.	$\frac{4}{\sqrt{1-x^2}}$	((OS (20)
8.	e^{2u+1}	-sin(20) = -2 sin 0. (0)0.
9.	x	= -2 sin 0. (a)0.
		why?

$$(x^{2}-1)^{2}$$

$$= x^{4}-2x^{2}+1$$

$$\frac{\chi^5}{5} - \frac{1}{3} + \chi + C$$

2.
$$\sqrt{\frac{3}{7}} = \sqrt{3} \cdot 2^{\frac{1}{2}}$$

$$\int_{\frac{1}{2}}^{\frac{1}{2}} = 2\int_{\frac{1}{2}}^{\frac{1}{2}} + C$$

$$3. \frac{4+u^2}{u} = \frac{4}{u} + \frac{u^2}{u} = \frac{4}{u} + u$$

Antiderivalu is

The anti-denute is
$$-\frac{1}{2}\cos^2 O + C$$

This page is left blank intentionally.

$$= \left\langle \begin{array}{c} \chi \\ \chi \\ \chi \rangle 0 \\ -\gamma c \\ \chi < 0 \end{array} \right.$$

Anti develo

$$= \left\{ \begin{array}{c} \chi^2 + C \\ -\chi^2 + C \end{array} \right. \quad \chi \geqslant 0$$