Solutions

Name:

MAC 2311 - Analytical Geometry and Calculus I

Quiz # 1, January 16, 2024

Problem 1.
Given the function

$$g(x) = \sqrt{5x-3}$$
.
(1 point)
1. What is the domain and range of g ?
Well we need $5x-370 = -3 = 2 = 3^{-3}5$.
Therefore the domain $f = g$ is
 $\begin{bmatrix} 3/5 & -30 \end{bmatrix}$
(4 points)
(4 points)
(4 points)
(4 points)
(4 points)
 $= -35x-3 = g^2$ (1 points)
 $= -35x-3 = g^2 + 3$
 $= -32 = g^{2}+3$
 $= -32 = g^{2}-3 = g^{2}$
 $= -32 = g^{2}-3 = g^{2}-3 = g^{2}$
 $= -32 = g^{2}-3 = g^{2}-3$

Problem 2 Points)

Given two functions

$$f = \ln(x+1)$$
 and $g = \frac{x^2 - 5x + 5}{x-2}$

1. Find the domain of $f \circ g(x) = f(g(x))$ and write it in interval notation.

Well
$$\int o_{1}(z) = \ln(g\omega) + 1)$$

 $= \ln(\frac{z^{2} - 5z + 5}{z - 2} + 1)$ (1 point)
For $\int o_{1}$ to be defined we need
 $\frac{\chi^{2} - 5x + 5}{z - 2} + 1 > 0$ (1 point)
Then $\frac{\chi^{2} - 5x + 5}{x - 2} + 1 = \frac{\chi^{2} - 5x + 5}{z - 2} + \frac{\chi^{-2}}{z - 2}$
 $= \frac{\chi^{2} - 4\chi + 3}{z - 2}$ (1 point)
 $\frac{\chi^{2} - 5x + 5}{z - 2} = \frac{(\chi - 3)(\chi - 1)}{(\chi - 2)}$ (so is what)

$$\frac{(+\infty,1)}{z^{-3}} = \frac{(1,2)}{-} = \frac{(2,3)}{-} = \frac{(2,3)}{-} = \frac{(1,2)}{-} = \frac{(1,2)}$$