Name:

Jo lutions

Problem 2 .

 $\mathcal{W}^{a,b}$ a.) Use linear approximation of $f(x) = \sqrt[3]{x}$ at a = 8 to find an approximate value for f(7.76).

A.) 1.975
$$L(x) = \int_{1}^{1} (a) (x - a) + \int_{1}^{1} (c)$$

B.) 1.98 $\int_{1}^{1} (x) = \frac{1}{3} \chi^{-\frac{3}{5}}$
C.) 1.985 $\int_{1}^{1} (x) = \frac{1}{3} \chi^{-\frac{3}{5}}$
D.) 1.99 $L(x) = \frac{1}{12} (x - 8) + 2$
E.) 1.995 $L(7.16) = \frac{1}{12} (7.76 - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $= \frac{1}{1.98}$
 $\int_{1}^{1} (x) = \frac{1}{12} (x - 8) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2$
 $\int_{1}^{1} (x - 8) + 2 = \frac{1}{12} (-0.24) + 2 = \frac{1}{12} ($

 20^{10} b.) Find an approximate value for $\ln(2.6)$ using linear approximation. (Hint $e \approx 2.718281...$.)

Denote
$$f(x) = \ln(x)$$

Then $f'(x) = \frac{1}{x}$
 $L(x) = f'(a) \cdot (x-a) + f(a) \cdot Choose \quad a = e.$
Then $f'(e) = \frac{1}{e} + f(e) = (n(e) = 1)$
So $L(x) = \frac{1}{e} \cdot (x-e) + 1$
Then $f(2.6) \approx L(2.6) = \frac{1}{e} (2.6-e) + 1$