MAC 2311 - Analytical Geometry and Calculus I Quiz # 9, March 19, 2024 50/ve f'(2)70 (5 point) **Problem 1** Find the intervals where $f(x) = x^3 - 12x + 1$ is strictly increasing. a.) $(-\infty, -2)$ b.) $(-2,\infty)$ c.) $(-2,2)\cup(2,\infty)$ d.) (-2, 2)e.)

Solutions

 $(-\infty,2)$ $(2,\infty)$ $(-\infty,-2) \cup (2,\infty)$

<u>Step [:</u> $f'(x) = 3x^2 - 12$

Name:

Slep2:	Solu	סרכגו'ץ		
	こ)	$3x^{2} - 12 > 0$		
	=)	3(x-2)(x+2) > 0		
		(- 001 -2)	(-2, 2)	(2,00)
		_	+	+
	x-2 x+2	-	-	+
	(x-2)(x+2)	+	-	+
f is strictly increasing on				
$(-\infty_1-2) \cup (2,\infty)$				

Problem 2 .

Suppose f is a function defined on the closed and bounded interval [2,5],

- f is continuous on [2,5],
- f differentiable on (2,5),
- f(2) = -2 and $f'(x) \ge 1$ for all x in [2,5].

(1 point) **a.**) Write down the conclusion of the Mean Value Theorem using the function f and interval (2,5) (2,4) above. Fill in as much information as possible.

$$\frac{f(5) - f(a)}{5 - a} = f(c) \quad (\text{ (onclustum q MVT)})$$

we know

$$\frac{f(5) - (-2)}{5 - 2} = f(c) > 1$$

b.) How small can f(5) be? That is what is the best lower bound on f(5)? (Hint: Use the Mean Value theorem and your work from a.))

We know
$$f(5) + 2 = f(c) > 1$$

=) $f(5) + 2 = f(c) > 1$
=) $f(5) + 2 > 1$
=) $f(5) + 2 > 3$
=) $f(5) + 2 > 3$
=) $f(5) > 1$
That is the smalled $f(5)$ can be is 1