Solutions

Problem 1 Find the domain for each the following functions. Specify the domain using interval notation or inequalities.

eguire ment:
$$x^2+1>0$$
. $f(x)=\ln(x^2+1)$ ($z \operatorname{Pol}^{i} \operatorname{MS}$)

But this holds for any x in $(-\infty,\infty)$ intend notation. Therfor the domain of f is $(-\infty,\infty)$ intend notation.

$$g(x)=\frac{2|x|+x}{2}$$

$$g(x) = \frac{2|x| + x}{x - 3}$$
 (1) The only restriction is $x \neq 3$.

Pomain of g is $(-\infty, 3) \cup (3, \infty)$

Problem 2 : Solve for x (4 points)

de

Start Hold
$$2ln(x) - ln(3-x) = ln(\frac{1}{2}) + ln(8)$$

$$|n(x^{2}) - |n(3-x)| = |n(\frac{1}{2}) + |n(x)|$$

$$|n(\frac{x^{2}}{3-x})| = |n(\frac{1}{2}) + |n(x)| = |n(\frac{1}{2})|$$

$$|n(\frac{x^{2}}{3-x})| = |n(\frac{1}{2})| + |n(x)| = |n(\frac{1}{2})|$$

$$|n(\frac{x^{2}}{3-x})| = |n(\frac{1}{2})| + |n(\frac{1}{2})|$$

$$|n(\frac{x^{2}}{3-x})| = |n(\frac{1}{2})| + |n(\frac{1}{2})|$$

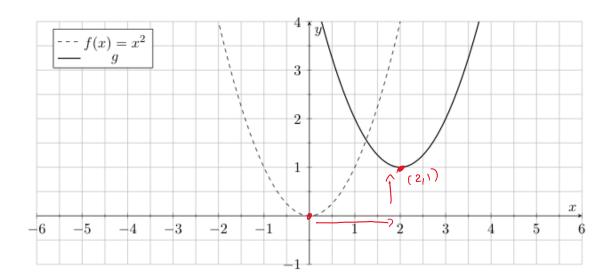
$$|n(\frac{x^{2}}{3-x})| = |n(\frac{1}{2})| + |n(\frac{1}{2})|$$

$$|n(\frac{1}{2}) + |n(\frac{1}{2})| + |n(\frac{1}{2})|$$

$$|n(\frac{1}{2}) + |n(\frac{1}{2})|$$

• Determine that x = 2 is the only solution be cause ln(x) is not defined for x=-6.

Consider the graphs of the two functions f and g. Where g is obtained by transforming f.



a) Which of the following it the correct definition for g? Choose the correct solution:

b) What is the range of g? Choose the correct solution:

 $iv) g(x) = x^2 - 4x + 3$

i)
$$[1,\infty)$$
 The function g can only achieve $ii)$ $(-\infty,\infty)$ Values greater than or equal to l . (1) $iii)$ $(0,\infty)$ $iv)$ $(1,\infty)$