Involutions under Bruhat order and labeled Motzkin paths

Speaker: Michael Coopman

UF FLORIDA

October 15th, 2022

Joint work with Zachary Hamaker.

An **inversion** of a permutation π is a (i, j) such that i < j and $\pi_i > \pi_j$. Let $Inv(\pi)$ be the set of inversions of π and $\ell(\pi) = |Inv(\pi)|$.

Ex:

 $\begin{aligned} &\mathsf{Inv}(2413) = \{(1,3),(2,3),(2,4)\}.\\ &\mathsf{Inv}(4231) = \{(1,2),(1,3),(1,4),(2,4),(3,4)\}. \end{aligned}$

Bruhat order

Definition

The (strong) Bruhat order on \mathfrak{S}_n is a poset $(\mathfrak{S}_n, <)$ such that $\pi \leq (i \ j)\pi$ if $\ell((i \ j)\pi) = \ell(\pi) + 1$.

Figure: Bruhat order on \mathfrak{S}_4 [A. Björner, F. Brenti 2005].

Bruhat order

Definition

The (strong) Bruhat order on \mathfrak{S}_n is a poset $(\mathfrak{S}_n, <)$ such that $\pi \leq (i \ j)\pi$ if $\ell((i \ j)\pi) = \ell(\pi) + 1$.

As ℓ is the rank function of this poset, we have

$$R_{\mathfrak{S}_n}(q) = \sum_{\pi \in \mathfrak{S}_n} q^{\ell(\pi)} = \prod_{i=1}^n [i]_q \quad \text{where} \quad [i]_q = q^0 + q^1 + \ldots + q^{i-1}.$$

Bruhat order

Definition

The (strong) Bruhat order on \mathfrak{S}_n is a poset $(\mathfrak{S}_n, <)$ such that $\pi \leq (i j)\pi$ if $\ell((i j)\pi) = \ell(\pi) + 1$.

As ℓ is the rank function of this poset, we have

$$R_{\mathfrak{S}_n}(q) = \sum_{\pi \in \mathfrak{S}_n} q^{\ell(\pi)} = \prod_{i=1}^n [i]_q \quad \text{where} \quad [i]_q = q^0 + q^1 + \ldots + q^{i-1}.$$

What happens if we restrict $(\mathfrak{S}_n, <)$ to subsets of \mathfrak{S}_n ?

Bruhat order for involutions

Definition

A permutation σ is an **involution** if $\sigma^2 = Id_n$. Let \mathcal{I}_n denote the set of involutions of \mathfrak{S}_n .

Figure: Bruhat order for \mathcal{I}_4 .

Definition (Z. Hamaker, E. Marberg, P. Paulowski 2017)

An inversion $(i, j) \in Inv(\pi)$ is visible if $\pi_j \leq i$. Let $\widehat{Inv}(\pi)$ be the set of such inversions of π and $\hat{\ell}(\pi) = |\widehat{Inv}(\pi)|$.

For \mathcal{I}_n , $\hat{\ell}$ is its corresponding rank function. With visible inversions, it is easy to verify the following recursion

$$R_{\mathcal{I}_n}(q) = R_{\mathcal{I}_{n-1}}(q) + q[n-1]_q R_{\mathcal{I}_{n-2}}(q).$$

A Motzkin path μ of length n is a lattice path M from (0,0) to (n,0) with up steps U = (1,1), down steps D = (-1,1), and horizontal steps H = (0,1) that stays in the first quadrant. Let \mathcal{M}_n be the set of Motzkin paths of length n.

Definition

The **height** of the *i*-th step $h_i(\mu)$ is the largest y-coordinate of its endpoints.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu = \mu_1 \mu_2 \dots \mu_n$ where every downstep μ_i is associated with an integer $\lambda_i \in [h_i(\mu)]$.

Formalization

For $(\mu, \lambda) \in \mathcal{M}_n^L$ with $\mu = \mu_1 \dots \mu_n$, define

$$H_i(\mu,\lambda) = \begin{cases} \lambda_i(\mu) - 1 & \mu_i = D\\ h_i(\mu) & \mu_i \neq D \end{cases} \quad \text{and} \quad H(\mu,\lambda) = \sum_{i=1}^n H_i(\mu,\lambda).$$

Proposition

Let ϕ be Biane's bijection. For all $\sigma \in \mathcal{I}_n$, $\hat{\ell}(\sigma) = H(\phi(\sigma))$.

Proof.

Fix $\sigma \in \mathcal{I}_n$ and $i \in [n]$. Consider the amount of visible inversions of the form (i, j). If $i \leq \sigma(i)$, the amount is equivalent the number of 2-cycles $(\sigma(j) \ j)$ such that $\sigma(j) \leq i < j$. Via ϕ , this is precisely the height of the *i*-th step. If $i > \sigma(i)$, the amount is equal to the number of 2-cycles $(\sigma(j) \ j)$ such that $\sigma(j) < \sigma(i) < i < j$. Via ϕ , the label λ_i indicates that there are $\lambda_i - 1$ unpaired up steps as of the labeling of the *i*-th step. \Box

For $\mu \in \mathcal{M}_n$, define

$$H[\mu;q] = \sum_{\lambda:(\mu,\lambda)\in\mathcal{M}_n^L} q^{H(\mu,\lambda)}.$$

Alternatively, with

$$H_i[\mu;q] = \begin{cases} [h_i(\mu)]_q & \mu_i = D\\ q^{h_i(\mu)} & \text{else} \end{cases}, \quad \text{we have} \quad H[\mu;q] = \prod_{i=1}^n H_i[\mu;q].$$

Theorem (C., Z. Hamaker 2022)

$$R_{\mathcal{I}_n}(q) = \sum_{\mu \in \mathcal{M}_n} H[\mu; q].$$

We can perform the same treatment to the set of fixed point free (FPF) involutions.

Definition

An inversion $(i, j) \in Inv(\pi)$ is **FPF visible** if $\pi_j < i$. Let $\widehat{Inv}^{FPF}(\pi)$ be the set of such inversions of π and $\hat{\ell}^{FPF}(\pi) = |\widehat{Inv}^{FPF}(\pi)|$.

Definition

A **Dyck path** δ of semi-length n is a Motzkin path of length 2n without any horizontal steps. Let \mathcal{D}_n be the set of Dyck paths of semi-length n.

Corollary

$$\sum_{\delta \in \mathcal{D}_n} H[\delta, q] = q^n R_{\mathcal{I}_n^{FPF}}(q) = q^n \prod_{k=1}^n [2k-1]_q.$$

Proof.

Observe the following.

• For
$$\tau \in \mathcal{I}_{2n}^{FPF}$$
, $\hat{\ell}(\tau) = \hat{\ell}^{FPF}(\tau) + n$.

- When restricted to \mathcal{I}_{2n}^{FPF} , Biane's bijection is a bijection from \mathcal{I}_{2n}^{FPF} to Dyck paths of semi-length n where each down step is labeled.
- Using FPF-visible inversions, the equation $R_{\mathcal{I}_{2n}^{FPF}}(q) = \prod_{k=1}^{n} [2k-1]_q$ can be verified.

The result follows from the previous theorem.

Rephrasing of Corollary

Let $h'_i(\delta)$ be the height of the *i*-th down step of δ . Then,

$$\prod_{k=1}^{n} [2k-1]_{q} = \sum_{\delta \in \mathcal{D}_{n}} \prod_{i \in [n]} q^{h'_{i}(\delta)-1} [h'_{i}(\delta)]_{q}.$$

This result has proven before:

[I. Goulden, D. Jackson 1983],[L. Billera, L. Levine, K. Mészáros 2013],[M. Watson 2014].

Cover relations in terms of Biane's bijection

Figure: Cover relations $\tau \prec_W \sigma$ for $\tau, \sigma \in \mathcal{I}_n$, with involutions depicted as partial matchings.