Involutions under Bruhat order and labeled Motzkin paths

Speaker: Michael Coopman
UF| \(\left\lvert\, \begin{gathered}Universitro of
FLORIDA\end{gathered}\right.\)
October 15th, 2022

Joint work with Zachary Hamaker.

Inversions

Definition

An inversion of a permutation π is a (i, j) such that $i<j$ and $\pi_{i}>\pi_{j}$. Let $\operatorname{Inv}(\pi)$ be the set of inversions of π and $\ell(\pi)=|\operatorname{lnv}(\pi)|$.

Ex:

$$
\begin{aligned}
\operatorname{Inv}(2413) & =\{(1,3),(2,3),(2,4)\} \\
\operatorname{Inv}(4231) & =\{(1,2),(1,3),(1,4),(2,4),(3,4)\}
\end{aligned}
$$

Bruhat order

Definition

The (strong) Bruhat order on \mathfrak{S}_{n} is a poset $\left(\mathfrak{S}_{n},<\right)$ such that $\pi \lessdot(i j) \pi$ if $\ell((i j) \pi)=\ell(\pi)+1$.

Figure: Bruhat order on \mathfrak{S}_{4} [A. Björner, F. Brenti 2005].

Bruhat order

Definition

The (strong) Bruhat order on \mathfrak{S}_{n} is a poset $\left(\mathfrak{S}_{n},<\right)$ such that $\pi \lessdot(i j) \pi$ if $\ell((i j) \pi)=\ell(\pi)+1$.

As ℓ is the rank function of this poset, we have

$$
R_{\mathfrak{S}_{n}}(q)=\sum_{\pi \in \mathfrak{S}_{n}} q^{\ell(\pi)}=\prod_{i=1}^{n}[i]_{q} \quad \text { where } \quad[i]_{q}=q^{0}+q^{1}+\ldots+q^{i-1}
$$

Bruhat order

Definition

The (strong) Bruhat order on \mathfrak{S}_{n} is a poset $\left(\mathfrak{S}_{n},<\right)$ such that $\pi \lessdot(i j) \pi$ if $\ell((i j) \pi)=\ell(\pi)+1$.

As ℓ is the rank function of this poset, we have

$$
R_{\mathfrak{S}_{n}}(q)=\sum_{\pi \in \mathfrak{S}_{n}} q^{\ell(\pi)}=\prod_{i=1}^{n}[i]_{q} \quad \text { where } \quad[i]_{q}=q^{0}+q^{1}+\ldots+q^{i-1}
$$

What happens if we restrict $\left(\mathfrak{S}_{n},<\right)$ to subsets of \mathfrak{S}_{n} ?

Bruhat order for involutions

Definition

A permutation σ is an involution if $\sigma^{2}=I d_{n}$. Let \mathcal{I}_{n} denote the set of involutions of \mathfrak{S}_{n}.

Figure: Bruhat order for \mathcal{I}_{4}.

Visible Inversions

Definition (Z. Hamaker, E. Marberg, P. Paulowski 2017)

An inversion $(i, j) \in \operatorname{lnv}(\pi)$ is visible if $\pi_{j} \leqslant i$. Let $\widehat{\operatorname{Inv}}(\pi)$ be the set of such inversions of π and $\hat{\ell}(\pi)=|\widehat{\operatorname{Inv}}(\pi)|$.

For $\mathcal{I}_{n}, \hat{\ell}$ is its corresponding rank function.
With visible inversions, it is easy to verify the following recursion

$$
R_{\mathcal{I}_{n}}(q)=R_{\mathcal{I}_{n-1}}(q)+q[n-1]_{q} R_{\mathcal{I}_{n-2}}(q) .
$$

Motzkin paths

Definition

A Motzkin path μ of length n is a lattice path M from $(0,0)$ to $(n, 0)$ with up steps $U=(1,1)$, down steps $D=(-1,1)$, and horizontal steps $H=(0,1)$ that stays in the first quadrant. Let \mathcal{M}_{n} be the set of Motzkin paths of length n.

Definition

The height of the i-th step $h_{i}(\mu)$ is the largest y-coordinate of its endpoints.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

$$
\pi=(110)(24)(3)(59)(611)(7)(8)
$$

$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

$\pi=(110)(24)(3)(59)(611)(7)(8)$								

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

Biane's Bijection

Definition

A labeled Motzkin path (μ, λ) is a Motzkin path $\mu=\mu_{1} \mu_{2} \ldots \mu_{n}$ where every downstep μ_{i} is associated with an integer $\lambda_{i} \in\left[h_{i}(\mu)\right]$.

When restricted to involutions, Biane's bijection (1993) becomes a bijection between \mathcal{I}_{n} and \mathcal{M}_{n}^{L}.

$\pi=(110)(24)(3)(59)(611)(7)(8)$									
					(6,9)	$(7,9)$	$(8,9)$		
	(2,4)	$(3,4)$		(5,9)	$(6,10)$	$(7,10)$	$(8,10)$		
(1,10)	$(2,10)$	$(3,10)$	$(4,10)$	$(5,10)$	$(6,11)$	(7,11)	$(8,11)$	$(9,10)$	
1	2	3	4	5	6	7	8	9	1011

Formalization

For $(\mu, \lambda) \in \mathcal{M}_{n}^{L}$ with $\mu=\mu_{1} \ldots \mu_{n}$, define

$$
H_{i}(\mu, \lambda)=\left\{\begin{array}{ll}
\lambda_{i}(\mu)-1 & \mu_{i}=D \\
h_{i}(\mu) & \mu_{i} \neq D
\end{array} \quad \text { and } \quad H(\mu, \lambda)=\sum_{i=1}^{n} H_{i}(\mu, \lambda)\right.
$$

Proposition

Let ϕ be Biane's bijection. For all $\sigma \in \mathcal{I}_{n}, \hat{\ell}(\sigma)=H(\phi(\sigma))$.

Proof.

Fix $\sigma \in \mathcal{I}_{n}$ and $i \in[n]$. Consider the amount of visible inversions of the form (i, j). If $i \leqslant \sigma(i)$, the amount is equivalent the number of 2 -cycles $(\sigma(j) j)$ such that $\sigma(j) \leqslant i<j$. Via ϕ, this is precisely the height of the i-th step. If $i>\sigma(i)$, the amount is equal to the number of 2 -cycles $(\sigma(j) j)$ such that $\sigma(j)<\sigma(i)<i<j$. Via ϕ, the label λ_{i} indicates that there are $\lambda_{i}-1$ unpaired up steps as of the labeling of the i-th step.

Formalization

For $\mu \in \mathcal{M}_{n}$, define

$$
H[\mu ; q]=\sum_{\lambda:(\mu, \lambda) \in \mathcal{M}_{n}^{L}} q^{H(\mu, \lambda)}
$$

Alternatively, with

$$
H_{i}[\mu ; q]=\left\{\begin{array}{ll}
{\left[h_{i}(\mu)\right]_{q}} & \mu_{i}=D \\
q^{h_{i}(\mu)} & \text { else }
\end{array}, \quad \text { we have } \quad H[\mu ; q]=\prod_{i=1}^{n} H_{i}[\mu ; q]\right.
$$

Theorem (C., Z. Hamaker 2022)
$R_{\mathcal{I}_{n}}(q)=\sum_{\mu \in \mathcal{M}_{n}} H[\mu ; q]$.

Corollary: FPF-involutions

We can perform the same treatment to the set of fixed point free (FPF) involutions.

Definition

An inversion $(i, j) \in \operatorname{lnv}(\pi)$ is FPF visible if $\pi_{j}<i$. Let $\widehat{\operatorname{Inv}}^{F P F}(\pi)$ be the set of such inversions of π and $\hat{\ell}^{F P F}(\pi)=\left|\widehat{I n v}^{F P F}(\pi)\right|$.

Definition

A Dyck path δ of semi-length n is a Motzkin path of length $2 n$ without any horizontal steps. Let \mathcal{D}_{n} be the set of Dyck paths of semi-length n.

Corollary: FPF-involutions

Corollary

$\sum_{\delta \in \mathcal{D}_{n}} H[\delta, q]=q^{n} R_{\mathcal{I}_{n}^{F P F}}(q)=q^{n} \prod_{k=1}^{n}[2 k-1]_{q}$.

Proof.

Observe the following.

- For $\tau \in \mathcal{I}_{2 n}^{F P F}, \hat{\ell}(\tau)=\hat{\ell}^{F P F}(\tau)+n$.
- When restricted to $\mathcal{I}_{2 n}^{F P F}$, Biane's bijection is a bijection from $\mathcal{I}_{2 n}^{F P F}$ to Dyck paths of semi-length n where each down step is labeled.
- Using FPF-visible inversions, the equation

$$
R_{\mathcal{I}_{2 n}^{F P F}}(q)=\prod_{k=1}^{n}[2 k-1]_{q} \text { can be verified. }
$$

The result follows from the previous theorem.

Corollary: FPF-involutions

Rephrasing of Corollary

Let $h_{i}^{\prime}(\delta)$ be the height of the i-th down step of δ. Then,

$$
\prod_{k=1}^{n}[2 k-1]_{q}=\sum_{\delta \in \mathcal{D}_{n}} \prod_{i \in[n]} q^{h_{i}^{\prime}(\delta)-1}\left[h_{i}^{\prime}(\delta)\right]_{q} .
$$

This result has proven before:
[I. Goulden, D. Jackson 1983],
[L. Billera, L. Levine, K. Mészáros 2013],
[M. Watson 2014].

Cover relations in terms of Biane's bijection

Figure: Cover relations $\tau \lessdot{ }_{W} \sigma$ for $\tau, \sigma \in \mathcal{I}_{n}$, with involutions depicted as partial matchings.

