[2 points] 1. Let $\vec{u}=\langle 1,0,-1\rangle$ and $\vec{v}=\langle 8,-4,-1\rangle$.
(a). Find ANY vector that is orthogonal to both u and v. (Do not give me the zero vector).

Solution:

The cross product of two vectors is a vector that is orthogonal to both. So, simply find $\vec{u} \times \vec{v}$.

$$
\left[\begin{array}{ccc}
i & j & k \\
1 & 0 & -1 \\
8 & -4 & -1
\end{array}\right] \Longrightarrow \vec{u} \times \vec{v}=\langle 0-4,-(-1+8),-4\rangle=\langle\langle-4,-7,-4\rangle .
$$

Note: any multiple of $\langle-4,-7,-4\rangle$ will work.
[3 points] (b). Find the angle between u and v.

Solution:

The standard way is using the equation

$$
\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos (\theta) .
$$

So,

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =1(8)+0(-4)+(-1)(-1)=9 \\
|\vec{u}| & =\sqrt{1^{2}+0^{2}+(-1)^{2}}=\sqrt{2} . \\
|\vec{v}| & =\sqrt{8^{2}+(-4)^{2}+(-1)^{2}}=\sqrt{81}=9 .
\end{aligned}
$$

Putting these facts together,

$$
\begin{gathered}
9=\sqrt{2} 9 \cos (\theta) \\
\frac{1}{\sqrt{2}}=\cos (\theta) \\
\theta=\frac{\pi}{4}
\end{gathered}
$$

Note: a similar solution can be made using $|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin (\theta)$; however, this method cannot tell the difference between $\theta=\pi / 4$ and $\theta=3 \pi / 4$.
2. [3 points] Find the vector equation for the line that passes through the point $(2,0,1)$ and the center of the sphere $(x+2)^{2}+(y-2)^{2}+(z-5)^{2}=36$.

Solution:

The center of the sphere is $(-2,2,5)$. To make the equation for the line, a starting point and a direction are needed.
Possible starting points: $(2,0,1)$ or $(-2,2,5)$ (or maybe the midpoint).
Possible directions: vector from $(2,0,1)$ to $(-2,2,5)$ (or some multiple of that vector).

The vector from $(2,0,1)$ to $(-2,2,5)$ is $\langle-4,2,4\rangle$. Using $(2,0,1)$ as the starting point, we get

$$
L(t)=\langle 2-4 t, 2 t, 1+4 t\rangle .
$$

