1. A quadric surface is given by the equation $-x^{2}+y^{2}+6 y+z^{2}-10 z+30=0$. (a) [$\chi 2$ points $]$ Simplify the equation via completing the squares.

Solution:

$$
\begin{aligned}
-x^{2}+y^{2}+6 y+z^{2}-10 z+30 & =0 \\
-x^{2}+y^{2}+6 y+9-9+z^{2}-10 z+25-25+30 & =0 \\
-x^{2}+(y+3)^{2}+(z-5)^{2}-4 & =0
\end{aligned}
$$

$$
-x^{2}+(y+3)^{2}+(z-5)^{2}=4
$$

(b) [\$2 points] Identify the trace of the surface when intersected by the planes $x=k$. (Note: if the trace is different for different values of k, name each trace and the corresponding k-values where they apply).
Solution: Set $x=k$. We then have

$$
\begin{aligned}
-k^{2}+(y+3)^{2}+(z-5)^{2} & =4 \\
(y+3)^{2}+(z-5)^{2} & =4+k^{2}
\end{aligned}
$$

Since $4+k^{2}$ is always a positive number, the only shape the trace can be is a circle (If a the right-side was 0 , then we would have a point. If the right-side was negative, the trace would be nothing).
(c) [1 point] Identify the surface.

Solution: The surface seems to be made up of circles. The circles shrink as one gets closer to $x=0$. The only quadric surface that does that is the hyperboloid on one sheet.
2. Let $\vec{r}(t)=\left\langle 3 t, 1+t^{2}, 2 t \ln (t-1)\right\rangle$.
(a) [1.5 points] Find $\vec{r}^{\prime}(t)$.

Solution: You may take the derivative component-wise.

$$
\left\langle 3,2 t, 2 \ln (t-1)+2 \frac{t}{t-1}\right\rangle
$$

(b) [1.5 points] Find $\hat{T}(2)$, the unit tangent vector to the curve $\vec{r}(t)$ at $t=2$.

Solution: Since we have completed all differentiation steps, we can plug in $t=2$ and then calculate $\hat{T}(2)$ (the reverse is possible but more annoying to perform).

$$
\begin{aligned}
\vec{r}(2) & =\langle 3,4,2 \ln (1)+2\rangle=\langle 3,4,4\rangle \\
|\vec{r}(2)| & =\sqrt{3^{2}+4^{2}+4^{2}}=\sqrt{41} \\
\hat{T}(2) & =\frac{\vec{r}(2)}{|\vec{r}(2)|}=\frac{1}{\sqrt{41}}\langle 3,4,4\rangle .
\end{aligned}
$$

