1. (a) [3 points] What is the directional derivative at $(2,1,4)$ in the direction of $\vec{u}=\langle 1,2,2\rangle$?

Solution:

The directional derivative is the dot product of the unit vector in the direction of u and the gradient of f at $(2,1,4)$. The gradient of f is

$$
\nabla f(x, y, z)=\left\langle y^{2}, 2 x y, 3\right\rangle
$$

At $(2,1,4)$, this is

$$
\nabla f(2,1,4)=\left\langle 1^{2}, 2(2) 1,3\right\rangle=\langle 1,4,3\rangle
$$

The unit vector in the direction of u is

$$
\frac{u}{|u|}=\frac{1}{\sqrt{1^{2}+2^{2}+2^{2}}}\langle 1,2,2\rangle=\frac{1}{3}\langle 1,2,2\rangle .
$$

Thus, their dot product is

$$
\frac{1}{3}(1 * 1+4 * 2+3 * 2)=\frac{1}{3}(15)=5
$$

(b) [1 point] At $(2,1,4)$, what direction is the maximum rate of increase?

What is said maximum rate of increase?
Solution: Since the directional derivative of f in the direction of u is $|\hat{u}||\nabla f| \cos (\theta)=|\nabla f| \cos (\theta)$, the directional derivative is maximized when $\cos (\theta)=1$, where θ is the angle between u and ∇f when treating them as vectors. Thus, the value is maximized when $\theta=0$, so the direction of maximum rate of increase is $\langle 1,4,3\rangle$ or any positive multiple of this vector (including its unit vector). The maximum rate of increase will be $|\nabla f|=$ $\sqrt{1+16+9}=\sqrt{26}$. This is obtained from the setting $\theta=0$ for the equation in the first sentence of this solution.
2. [2 points] Find $\frac{\partial f}{\partial \theta}$ for $f(x, y)=5 x y+e^{2 x}$ where $x=r \cos (\theta)$ and $y=$ $r \sin (\theta)$. Express the answer in terms of r and θ. Solution: By chain rule, we have

$$
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}
$$

So, finding all relevant parts, this should be

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =\left(5 y+2 e^{2 x}\right)(-r \sin (\theta))+(5 x+0)(r \cos (\theta)) \\
& =\left(5 r \sin (\theta)+2 e^{2 r \cos (\theta)}\right)(-r \sin (\theta))+(5 r \cos (\theta))(r \cos (\theta)) \\
& =-5 r^{2} \sin ^{2}(\theta)-2 r e^{2 r \cos (\theta)} \sin (\theta)+5 r^{2} \cos ^{2}(\theta)
\end{aligned}
$$

3. [2 points] Find the equation for the tangent plane for the surface $z^{2}=$ $x^{2}+4 y^{2}+4$ at the point $(4,2,6)$

Solution:

First, we find the gradient of the equation. As this is an implicit gradient, this means we must move all variable to one side ($F: 0=x^{2}+4 y^{2}+4-z^{2}$) before taking partials, so we have

$$
\nabla F=\langle 2 x, 8 y,-2 z\rangle \xrightarrow{@(4,2,6)}\langle 8,16,-12\rangle
$$

Then, the equation of the tangent plane will be

$$
\begin{aligned}
0 & =\nabla F_{@(4,2,6)} \cdot\langle x-4, y-2, z-6\rangle \\
& =8(x-4)+16(y-2)-12(z-6)=0
\end{aligned}
$$

This can optionally be simplified more to get

$$
8 x+16 y-12 z+8=0
$$

and even more to get

$$
2 x+4 y-3 z+2=0
$$

