1(a). [2 points] Convert the point $(-\sqrt{2}, \sqrt{2}, 2 \sqrt{3})$ from rectangular coordinates to cylindrical coordinates (r, θ, z).

Solution:

$$
\begin{aligned}
z & =z=2 \sqrt{3} \\
r^{2} & =x^{2}+y^{2}=2+2=4 \quad \Rightarrow r=2 \\
\tan (\theta) & =\frac{y}{x}=-1 \quad \Rightarrow \quad \theta=\frac{3 \pi}{4}, \frac{7 x t}{4} \quad \text { (Quadrant II, not IV) }
\end{aligned}
$$

The point in spherical coordinates is $\left(2, \frac{3 \pi}{4}, 2 \sqrt{3}\right)$.
1(b). [2 points] $\left[2\right.$ points] Convert $\left(4, \frac{4 \pi}{3}, \frac{\pi}{6}\right)$ from spherical coordinates to rectangular coordinates (x, y, z).

Solution:

For this problem (and anything involving spherical coordinates), note that $z=\rho \cos (\phi), " r "=\rho \sin (\phi), x=" r " \cos (\theta)$, and $y=" r " \sin (\theta)$. (the variable $" r "$ is not a variable for either rectangular or spherical but it is still a useful quantity when remembering these formulas). Using this, we have

$$
\begin{aligned}
x & =r \cos (\theta)=\rho \sin (\phi) \cos (\theta)=4\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right) \\
& =-1 \\
y & =r \sin (\theta)=\rho \sin (\phi) \sin (\theta)=4\left(\frac{1}{2}\right)\left(\frac{-\sqrt{3}}{2}\right) \\
& =-\sqrt{3} \\
z & =\rho \cos (\phi)=4\left(\frac{\sqrt{3}}{2}\right) \\
& =2 \sqrt{3}
\end{aligned}
$$

The point in rectangular coordinates is $(-1,-\sqrt{3}, 2 \sqrt{3})$.
2. [4 points] Calculate the following integral

$$
\iint_{R} 2 x y d A
$$

where R is the region inside the ellipse $\frac{x^{2}}{9}+y^{2}=1$ and the first quadrant. [Hint: perform a change of variables twice (or once if you're clever)].

Solution:

To simplify R, we will perform the change of variables $x=3 u$ and $y=v$. The Jacobian would be

$$
\frac{d(x, y)}{d(u, v)}=\left|\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right|=|3|=3
$$

The first change of variables converts our integration region into a quartercircle. Our second change of variables will be to polar: $u=r \cos (\theta)$ and $v=r \sin (\theta)$. With this, we obtain:

$$
\begin{aligned}
\iint_{\frac{x^{2}}{9}+y^{2} \leq 1, \mathrm{QI}} 2 x y d A & =\iint_{u^{2}+v^{2} \leq 1, \mathrm{QI}} 6 u v(3 d A) \quad(\mathrm{QI}=\text { Quadrant } \mathrm{I}) \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} 18 r \cos (\theta) r \sin (\theta) r d r d \theta \\
& =9 \int_{0}^{\pi / 2} 2 \sin (\theta) \cos (\theta) d \theta \int_{0}^{1} r^{3} d r \\
& =\left.\left.9 \sin ^{2}(\theta)\right|_{0} ^{\pi / 2}\left(\frac{r^{4}}{4}\right)\right|_{0} ^{1} \\
& =9(1)\left(\frac{1}{4}\right)=\frac{9}{4} .
\end{aligned}
$$

