1. Let $\mathbf{F}(x, y)=2 y e^{x y} \vec{i}+\left(2 x e^{x y}+3 y^{2}\right) \vec{j}$ be a vector field.
(a) [2 points] Verify that \mathbf{F} is conservative by finding the function f such that $\nabla f=\mathbf{F}$.

Solution:

$$
\begin{aligned}
\int 2 y e^{x y} d x & =2 e^{x y}+G(y) \\
\int 2 x e^{x y}+3 y^{2} d x & =2 e^{x y}+y^{3}+H(x)
\end{aligned}
$$

There are two terms: $2 e^{x y}$ and y^{3}. The first term explicitly appears in both; the second term explicitly appears in the second equation $\left(y^{3}\right)$ and implicitly in the first equation $\left(G(y)\right.$. Therefore, $f(x, y)=2 e^{x y}+y^{3}+C$ is the potential function.
(b) [1 point] Calculate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve $y=5-x^{2}$ starting at $(-2,1)$ and ending at $(2,1)$.

Solution:

The path of the curve does not matter. Only the initial and final points matter since the function is conservative by the Fundamental Theorem of Line Integrals.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =f(2,1)-f(-2,1), \\
& =\left(2 e^{2}+1\right)-\left(2 e^{-2}+1\right), \\
& =2 e^{2}-2 e^{-2}
\end{aligned}
$$

2. Let \mathbf{F} be the vector field given by

$$
\left\langle-y^{2}+x \sin (x), 2 x y-3 y^{2} \cos \left(y^{3}\right)\right\rangle .
$$

Use Green's theorem to evaluate the line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the (positively-oriented) curve which traces out the triangle with corners $(0,0)$, $(1,0)$, and $(0,3)$.

Solution:

The region bounded is a triangle bounded by $x=0, y=0$, and $y=3-3 x$. Use Green's Theorem:

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\int_{0}^{1} \int_{0}^{3-3 x}(2 y-(-2 y)) d y d x \\
& =\int_{0}^{1} \int_{0}^{3-3 x} 4 y d y d x \\
& =\int_{0}^{1} 2(3-3 x)^{2} d x \\
& =2 \int_{0}^{1}\left(9-18 x+9 x^{2}\right) d x \\
& =\left.2\left(9 x-9 x^{2}+3 x^{3}\right)\right|_{0} ^{1} \\
& =2(9-9+3)=6 .
\end{aligned}
$$

