1. [4 points] Determine whether the limit exists. If the limit exists, find its value.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+x y-y^{2}}$.

Solution:
Along the x -axis:

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}}=1
$$

Along the y -axis:

$$
\lim _{y \rightarrow 0} \frac{-y^{2}}{-y^{2}}=1
$$

Along the $x=y$ curve:

$$
\lim _{x \rightarrow 0} \frac{x^{2}-x^{2}}{x^{2}+x^{2}-x^{2}}=\frac{0}{x^{2}}=0
$$

The limit for the $x=y$ curve is different from the limit for the x -axis (and y -axis). So, the limit does not exist.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{y \sin \left(\sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}}$ We can switch to polar coordinates:

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{y \sin \left(\sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}} & =\lim _{r \rightarrow 0^{+}} \frac{r \sin (\theta) \sin (r)}{r^{2}} \\
& =\lim _{r \rightarrow 0^{+}} \frac{\sin (\theta) \sin (r)}{r} \\
& =\sin (\theta) \lim _{r \rightarrow 0^{+}} \frac{\sin (r)}{r} \\
& =\sin (\theta)
\end{aligned}
$$

Note that $\cos (\theta)$ depends on θ, so this value is not the same for all paths. For example, going along the x -axis gives a value of 0 , going along the positive y -axis gives a value of 1 , and going along the positive $y=x$ curve gives a value of $\frac{\sqrt{2}}{2}$. Thus, the limit does not exist.
2. [2 points] Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ of $f(x, y)=5 x \sin (2 y)+x^{2} \cos (y)$.

$$
\frac{\partial f}{\partial x}=5 \sin (2 y)+2 x \cos (y)
$$

$$
\frac{\partial f}{\partial y}=10 x \cos (2 y)-x^{2} \sin (y)
$$

3. [2 points] Use implicit differentiation to find $\frac{\partial z}{\partial x}$ of the relation

$$
x y z=\ln (y z)+x^{y} .
$$

. Since we are finding $\frac{\partial z}{\partial x}$, take the partial of both sides with respect to x and treat y as a constant.

$$
\begin{aligned}
\frac{\partial}{\partial x}(x y z) & =\frac{\partial}{\partial x}\left(\ln (y z)+x^{y}\right) \\
y z+x y \frac{\partial z}{\partial x} & =\frac{1}{y z} \frac{\partial z}{\partial x}+y x^{y-1} \\
x y \frac{\partial z}{\partial x}-\frac{1}{y z} \frac{\partial z}{\partial x} & =y x^{y-1}-y z \\
\left(x y-\frac{1}{y z}\right) \frac{\partial z}{\partial x} & =y x^{y-1}-y z \\
\frac{\partial z}{\partial x} & =\frac{y x^{y-1}-y z}{x y-\frac{1}{y z}} .
\end{aligned}
$$

