Remember to show all of your work.

Problem 1. Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} x^{2} \tan (x)$

Sample Solution: This one was here to "trick" you all! For this limit, direct substitution works perfectly fine.

$$
\lim _{x \rightarrow 0} x^{2} \tan (x)=0^{2} \tan (0)=0(0)=0
$$

(b) $\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x-4}$

Sample Solution: This is a straight forward application of L'Hôpital's rule. Direct substitution gives the indeterminate form $\frac{0}{0}$, so we differentiate both numerator and denominator:

$$
\lim _{x \rightarrow 4} \frac{x^{2}-5 x+4}{x-4}=\lim _{x \rightarrow 4} \frac{2 x-5}{1}=3
$$

(c) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\csc (x)\right)$

Sample Solution: Direct substitution here yields the indeterminate form $\infty-\infty$. We can't quite use L'Hôpital's rule; we have to do some rearranging first

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\csc (x)\right)=\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin (x)}\right)=\lim _{x \rightarrow 0}\left(\frac{\sin (x)-x}{x \sin (x)}\right)
$$

Now we have $\frac{0}{0}$, so we can take the derivative of numerator and denominator:

$$
\lim _{x \rightarrow 0}\left(\frac{\sin (x)-x}{x \sin (x)}\right)=\lim _{x \rightarrow 0}\left(\frac{\cos (x)-1}{\sin (x)+x \cos (x)}\right)
$$

This still gives $\frac{0}{0}$, so once more:

$$
\lim _{x \rightarrow 0}\left(\frac{\cos (x)-1}{\sin (x)+x \cos (x)}\right)=\lim _{x \rightarrow 0}\left(\frac{-\sin (x)}{\cos (x)+\cos (x)-x \sin (x)}\right)=\lim _{x \rightarrow 0}\left(\frac{-\sin (x)}{2 \cos (x)-x \sin (x)}\right)=0
$$

(d) $\lim _{x \rightarrow 1^{+}}(x-1)^{x^{2}-1}$

Sample Solution: Direct substitution here yields the indeterminate form 0^{0}. Here we'll use the exponential trick: remember that $x-1$ can be written as $e^{\ln (x-1)}$ (here I'll denote this $\exp [\ln (x-1)]$. Thus:

$$
\lim _{x \rightarrow 1^{+}}(x-1)^{x^{2}-1}=\lim _{x \rightarrow 1^{+}} \exp \left[\left(x^{2}-1\right) \ln (x-1)\right]=\exp \left[\lim _{x \rightarrow 1^{+}}\left(x^{2}-1\right) \ln (x-1)\right]
$$

So now we just need to find the limit in brackets. We have to rearrange a bit to be able to use L'Hôpital's rule:

$$
\lim _{x \rightarrow 1^{+}}\left(x^{2}-1\right) \ln (x-1)=\lim _{x \rightarrow 1^{+}} \frac{\ln (x-1)}{1 /\left(x^{2}-1\right)}
$$

Now direct substitution gives $\frac{-\infty}{\infty}$, so we can use L'Hôpital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{\ln (x-1)}{1 /\left(x^{2}-1\right)} & =\lim _{x \rightarrow 1^{+}} \frac{1 /(x-1)}{-2 x /\left(x^{2}-1\right)^{2}}=\lim _{x \rightarrow 1^{+}} \frac{1}{x-1} * \frac{-\left(x^{2}-1\right)^{2}}{2 x} \\
& =\lim _{x \rightarrow 1^{+}} \frac{1}{x-1} * \frac{-(x-1)(x+1)\left(x^{2}-1\right)}{2 x} \\
& =\lim _{x \rightarrow 1^{+}} \frac{-(x+1)\left(x^{2}-1\right)}{2 x} \\
& =0
\end{aligned}
$$

Thus, we have

$$
\lim _{x \rightarrow 1^{+}}(x-1)^{x^{2}-1}=\exp \left[\lim _{x \rightarrow 1^{+}}\left(x^{2}-1\right) \ln (x-1)\right]=\exp (0)=e^{0}=1
$$

