Remember to show all of your work.

Problem 1. Determine the expression for $f(x)$ given the following information:

- $f^{\prime \prime}(x)=30 x+32-e^{x}$
- $f(0)=0$
- $f(1)=25-e$

Sample Solution: We start by taking the antiderivative twice:

$$
\begin{aligned}
f^{\prime \prime}(x) & =30 x+32-e^{x} \\
f^{\prime}(x) & =15 x^{2}+32 x-e^{x}+C \\
f(x) & =5 x^{3}+16 x^{2}-e^{x}+C x+D
\end{aligned}
$$

Now we have to use the initial conditions to determine C and D. Beginning with $f(0)=0$:

$$
\begin{aligned}
f(x) & =5 x^{3}+16 x^{2}-e^{x}+C x+D \\
f(0) & =5(0)^{3}+16(0)^{2}-e^{0}+C(0)+D \\
0 & =-1+D \\
D & =1
\end{aligned}
$$

and now with $f(1)=25-e$:

$$
\begin{aligned}
f(x) & =5 x^{3}+16 x^{2}-e^{x}+C x+1 \\
f(1) & =5(1)^{3}+16(1)^{2}-e^{1}+C(1)+1 \\
25-e & =5+16-e+C+1 \\
25-e & =22-e+C \\
25 & =22+C \\
C & =3
\end{aligned}
$$

and thus, $f(x)=5 x^{3}+16 x^{2}-e^{x}+3 x+1$

Problem 2. Find an approximation of the area under the graph of $f(x)=x^{2}+1$ on the interval $[1,13]$ using
(a) right endpoints with $n=4$

Sample Solution First, note that the length of each interval will be $\frac{13-1}{4}=\frac{12}{4}=3$. Therefore, the intervals are $[1,4],[4,7],[7,10]$, and $[10,13]$, and $\Delta x=3$. Using right endpoints means we will use the x values $x=4,7,10$, and 13 . Thus,

$$
\begin{aligned}
\text { Area } & \approx f(4) \Delta x+f(7) \Delta x+f(10) \Delta x+f(13) \Delta x \\
& \approx\left(4^{2}+1\right)(3)+\left(7^{2}+1\right)(3)+\left(10^{2}+1\right)(3)+\left(13^{2}+1\right)(3) \\
& \approx 17(3)+50(3)+101(3)+170(3) \\
& \approx 51+150+303+510 \\
& \approx 1014
\end{aligned}
$$

(b) midpoints with $n=3$

Sample Solution First, note that the length of each interval will be $\frac{13-1}{3}=\frac{12}{3}=4$. Therefore, the intervals are $[1,5],[5,9]$, and $[9,13]$, and $\Delta x=4$. Using midpoints means we will use the x values $x=3,7$, and 11 . Thus,

$$
\begin{aligned}
\text { Area } & \approx f(3) \Delta x+f(7) \Delta x+f(11) \Delta x \\
& \approx\left(3^{2}+1\right)(4)+\left(7^{2}+1\right)(4)+\left(11^{2}+1\right)(4) \\
& \approx 10(4)+50(4)+122(4) \\
& \approx 40+200+488 \\
& \approx 728
\end{aligned}
$$

