Remember to show all of your work.

Problem 1. (5 points)
Let $\lim _{x \rightarrow a} f(x)=4, \lim _{x \rightarrow a} g(x)=-1$, and $\lim _{x \rightarrow a} h(x)=5$. Calculate $\lim _{x \rightarrow a}\left[\frac{(h(x))^{2}-3 f(x)}{g(x)}\right]$.

Solution: This is a problem based entirely around the usage of limit laws. First note that each of our given limits is as x approaches a. We can rewrite the problem as

$$
\lim _{x \rightarrow a}\left[\frac{(h(x))^{2}-3 f(x)}{g(x)}\right]=\frac{\left(\lim _{x \rightarrow a} h(x)\right)^{2}-3\left(\lim _{x \rightarrow a} f(x)\right)}{\lim _{x \rightarrow a} g(x)}
$$

and thus plugging in the information we're given yields

$$
\lim _{x \rightarrow a}\left[\frac{(h(x))^{2}-3 f(x)}{g(x)}\right]=\frac{(5)^{2}-3(4)}{-1}=\frac{25-12}{-1}=\frac{13}{-1}=-13
$$

Problem 2. (5 points)
Evaluate $\lim _{x \rightarrow 3}\left[\frac{x^{2}+5}{x^{2}-6 x+9}\right]$.

Solution: The first thing we can try is direct substitution (i.e. plugging in $x=3$ to our problem). This gives

$$
\frac{(3)^{2}+5}{(3)^{2}-6(3)+9}=\frac{9+5}{9-18+9}=\frac{14}{0}
$$

now because we have a nonzero number over zero, we're inclined to think the function $f(x)=$ $\frac{x^{2}+5}{x^{2}-6 x+9}$ has a vertical asymptote at $x=3$. We can check the signs on either side by setting up a number line with choices on either side of $x=3$.

Take $x=2$:

$$
\frac{(2)^{2}+5}{(2)^{2}-6(2)+9}=\frac{4+5}{4-12+9}=\frac{9}{1}=9
$$

Take $x=4$:

$$
\frac{(4)^{2}+5}{(4)^{2}-6(4)+9}=\frac{16+5}{16-24+9}=\frac{21}{1}=21
$$

Thus on either side of $x=3$ the function is positive. We have

$$
\lim _{x \rightarrow 3^{-}} \frac{x^{2}+5}{x^{2}-6 x+9}=\infty, \quad \lim _{x \rightarrow 3^{+}} \frac{x^{2}+5}{x^{2}-6 x+9}=\infty
$$

and thus

$$
\lim _{x \rightarrow 3}\left[\frac{x^{2}+5}{x^{2}-6 x+9}\right]=\infty
$$

