Remember to show all of your work.

Problem 1. Use the Squeeze Theorem to evaluate the limit, or explain why the theorem should not be used.

$$
\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{4}{x^{2}}\right)
$$

Sample Answer: Here we see a trig function $(\sin (x))$, so our first inclination is that we can indeed use the theorem.

Note that $\sin (x)$ is bounded: $-1 \leq \sin (x) \leq 1$ for all x. Therefore, we only need to make that center function appear like the function in the main problem. We have

$$
-1 \leq \sin \left(\frac{4}{x^{2}}\right) \leq 1
$$

Then multiply each term by x^{4} :

$$
-x^{4} \leq x^{4} \sin \left(\frac{4}{x^{2}}\right) \leq x^{4}
$$

Then take the limit of each term as $x \rightarrow 0$:

$$
\lim _{x \rightarrow 0}-x^{4} \leq \lim _{x \rightarrow 0} x^{4} \sin \left(\frac{4}{x^{2}}\right) \leq \lim _{x \rightarrow 0} x^{4}
$$

Now, notice that direct substitution works for the left and right terms, and the center term is the one we want to solve for. Plugging in $x=0$ to the left and right:

$$
0 \leq \lim _{x \rightarrow 0} x^{4} \sin \left(\frac{4}{x^{2}}\right) \leq 0
$$

Thus, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{4}{x^{2}}\right)=0
$$

Problem 2. Determine the interval(s) on which the following function is continuous. Write your answer in interval notation.

$$
g(x)=\sqrt{x^{2}-1}+\frac{\sin (x)}{x+2}
$$

Sample Answer Here we follow the approach that Dr. York outlined in class. Let's consider each function individually, determine their intervals of continuity, and then combine using a number line.

First, we know that anything under a square root cannot be negative. Therefore,

$$
\sqrt{x^{2}-1} \geq 0 \longrightarrow x^{2}-1 \geq 0 \longrightarrow x^{2} \geq 1 \longrightarrow x \geq 1 \text { or } x \leq-1
$$

Thus, $\sqrt{x^{2}-1}$ is continuous on $(-\infty,-1] \cup[1, \infty)$
Second, the function $\sin (x)$ is continuous everywhere: $(-\infty, \infty)$
Third, the function $\frac{1}{x+2}$ is only discontinuous where the denominator is zero, and therefore $x \neq-2$. We have that $\frac{1}{x+2}$ is continuous on $(-\infty,-2) \cup(-2, \infty)$

Now we see that the only points we need to worry about are $-2,-1,1$. Thus we can construct our number lines:

Now wherever we see overlapping pink, that is where the function is continuous.
Thus, $g(x)$ is continuous on $(\infty,-2) \cup(-2,-1] \cup[1, \infty)$.

