Remember to show all of your work.

Problem 1. Find the first and second derivatives of the following function:

$$
f(x)=2 x^{5} e^{x}+3 x^{4}+\pi^{2}
$$

Sample Solution: here we use the product rule and the rule for derivatives of polynomials and constants

$$
\begin{aligned}
f(x) & =2 x^{5} e^{x}+3 x^{4}+\pi^{2} \\
f^{\prime}(x) & =\left(\frac{d}{d x} 2 x^{5}\right) * e^{x}+2 x^{5} *\left(\frac{d}{d x} e^{x}\right)+\left(\frac{d}{d x} 3 x^{4}\right)+\left(\frac{d}{d x} \pi^{2}\right) \\
& =(2 * 5) x^{5-1} * e^{x}+2 x^{5} * e^{x}+(3 * 4) x^{4-1}+0 \\
& =10 x^{4} e^{x}+2 x^{5} e^{x}+12 x^{3}
\end{aligned}
$$

Important note: π^{2} is a constant, so $\frac{d}{d x} \pi^{2}=0$

$$
\begin{aligned}
f^{\prime}(x) & =10 x^{4} e^{x}+2 x^{5} e^{x}+12 x^{3} \\
f^{\prime \prime}(x) & =\left(\frac{d}{d x} 10 x^{4}\right) * e^{x}+10 x^{4} *\left(\frac{d}{d x} e^{x}\right)+\left(\frac{d}{d x} 2 x^{5}\right) * e^{x}+2 x^{5} *\left(\frac{d}{d x} e^{x}\right)+\left(\frac{d}{d x} 12 x^{3}\right) \\
& =(10 * 4) x^{4-1} e^{x}+10 x^{4} e^{x}+(2 * 5) x^{5-1} e^{x}+2 x^{5} e^{x}+(12 * 3) x^{3-1} \\
& =40 x^{3} e^{x}+10 x^{4} e^{x}+10 x^{4} e^{x}+2 x^{5} e^{x}+36 x^{2} \\
& =40 x^{3} e^{x}+20 x^{4} e^{x}+2 x^{5} e^{x}+36 x^{2}
\end{aligned}
$$

Problem 2. Find the x value(s) at which the following function has a horizontal tangent line:

$$
f(x)=x^{3}+10 x^{2}+12 x+7
$$

Sample Solution: To find horizontal tangent lines, we need to find exactly where the derivative of the function is equal to zero.

$$
\begin{aligned}
f(x) & =x^{3}+10 x^{2}+12 x+7 \\
f^{\prime}(x) & =(3 * 1) x^{3-1}+(10 * 2) x^{2-1}+(12 * 1) x^{1-1}+0 \\
& =3 x^{2}+20 x+12
\end{aligned}
$$

and now we need to find where this is zero:

$$
\begin{aligned}
0 & =3 x^{2}+20 x+12 \\
& =(3 x+2)(x+6)
\end{aligned}
$$

and therefore the function has horizontal tangent lines at $x=-\frac{2}{3}$ and $x=-6$

