Remember to show all of your work.

Problem 1. Calculate the derivative of each function. No need to simplify your answer.
(a) (2 points) $f(x)=e^{\sqrt{3 x+1}}$

Sample Solution

$$
\begin{aligned}
f(x) & =e^{\left((3 x+1)^{1 / 2}\right)} \\
f^{\prime}(x) & =e^{\left((3 x+1)^{1 / 2}\right)} * \frac{d}{d x}\left((3 x+1)^{1 / 2}\right) \\
& =e^{\left((3 x+1)^{1 / 2}\right)} * \frac{1}{2}(3 x+1)^{-1 / 2} * \frac{d}{d x}(3 x+1) \\
& =e^{\left((3 x+1)^{1 / 2}\right)} * \frac{1}{2}(3 x+1)^{-1 / 2} * 3
\end{aligned}
$$

(b (2 points) $f(x)=\sec ^{2}(4 x+1)$

Sample Solution

$$
\begin{aligned}
f(x) & =(\sec (4 x+1))^{2} \\
f^{\prime}(x) & =2(\sec (4 x+1))^{1} * \frac{d}{d x}(\sec (4 x+1)) \\
& =2(\sec (4 x+1)) * \sec (4 x+1) \tan (4 x+1) * \frac{d}{d x}(4 x+1) \\
& =2(\sec (4 x+1)) * \sec (4 x+1) \tan (4 x+1) * 4
\end{aligned}
$$

(c) (2 points) $f(x)=\tan \left(e^{x^{2}}\right)$

Sample Solution

$$
\begin{aligned}
f^{\prime}(x) & =\sec ^{2}\left(e^{x^{2}}\right) * \frac{d}{d x}\left(e^{x^{2}}\right) \\
& =\sec ^{2}\left(e^{x^{2}}\right) * e^{x^{2}} * \frac{d}{d x}\left(x^{2}\right) \\
& =\sec ^{2}\left(e^{x^{2}}\right) * e^{x^{2}} * 2 x
\end{aligned}
$$

Problem 2. (4 points) Find the equation of the tangent line of the following function at $x=\pi$:

$$
f(x)=\frac{e^{\sin (x)}}{\cos (x)}+3 x
$$

Sample Solution First, we should find the (x, y) coordinates of the point we want to find the tangent line of. We have $x=\pi$, so it remains to determine $f(\pi)$:

$$
\begin{aligned}
f(\pi) & =\frac{e^{\sin (\pi)}}{\cos (\pi)}+3(\pi) \\
& =\frac{e^{0}}{-1}+3 \pi \\
& =-1+3 \pi
\end{aligned}
$$

So the point is $(\pi,-1+3 \pi)$. Now we have to find the slope. There are a few ways to do this:
First way: quotient + chain rule

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\frac{d}{d x}\left(e^{\sin (x)}\right) * \cos (x)-e^{\sin (x)} * \frac{d}{d x}(\cos (x))}{\cos ^{2}(x)}+3 \\
& =\frac{e^{\sin (x)} * \frac{d}{d x}(\sin (x)) * \cos (x)-e^{\sin (x)} *(-\sin (x))}{\cos ^{2}(x)}+3 \\
& =\frac{e^{\sin (x)} * \cos (x) * \cos (x)-e^{\sin (x)} *(-\sin (x))}{\cos ^{2}(x)}+3 \\
f^{\prime}(\pi) & =\frac{e^{0}(-1)(-1)-e^{0}(0)}{(-1)^{2}}+3=\frac{1-0}{1}+3=4
\end{aligned}
$$

Second way: product + chain rule

$$
\begin{aligned}
f(x) & =e^{\sin (x)} \sec (x)+3 x \\
f^{\prime}(x) & =\frac{d}{d x}\left(e^{\sin (x)}\right) * \sec (x)+e^{\sin (x)} * \frac{d}{d x}(\sec (x))+3 \\
& =e^{\sin (x)} * \frac{d}{d x}(\sin (x)) * \sec (x)+e^{\sin (x)} * \sec (x) \tan (x)+3 \\
& =e^{\sin (x)} * \frac{d}{d x}(\sin (x)) * \sec (x)+e^{\sin (x)} * \sec (x) \tan (x)+3 \\
& =e^{\sin (x)} * \cos (x) * \sec (x)+e^{\sin (x)} * \sec (x) \tan (x)+3 \\
f^{\prime}(\pi) & =e^{0}(-1)(-1)+e^{0}(-1)(0)+3=1+0+3=4
\end{aligned}
$$

Therefore, (any of the following are correct, depending on your application of algebra)

$$
\begin{aligned}
y-(-1+3 \pi) & =4(x-\pi) \\
y+1-3 \pi & =4 x-4 \pi \\
y & =4 x-\pi-1 \\
y & =4 x-(\pi+1)
\end{aligned}
$$

