Remember to show all of your work.

Problem 1. Determine all critical points of $f(x)=4 \sin ^{2}(x+1)+\cos ^{2}(x+1)$ on the interval $[0,2 \pi]$.

NOTE: this question was thrown out due to a typo and also because Dr. York mentioned it would not be on the quiz...and yet here it was. Woops! None the less, the solution is as follows:

Sample Solution: this comes from finding where $f^{\prime}(x)=0$ or where $f^{\prime}(x)$ is undefined. We have

$$
\begin{aligned}
f^{\prime}(x) & =8 \sin (x+1) \cos (x+1)-2 \sin (x+1) \cos (x+1) \\
& =6 \sin (x+1) \cos (x+1)
\end{aligned}
$$

Note that $f^{\prime}(x)$ is defined everywhere, so we only need to find where $f^{\prime}(x)=0$. Now, $\sin (x)=0$ when $x=n \pi$ for any integer n. Likewise, $\cos (x)=0$ when $x=\frac{(2 n+1) \pi}{2}=n+\frac{\pi}{2}$ for any integer n. Because we only need $x \in[0,2 \pi]$, this gives

$$
x+1=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi
$$

and thus the critical points are $x=\frac{\pi}{2}-1, \pi-1, \frac{3 \pi}{2}-1,2 \pi-1$

Problem 2. Compute $d y$ and Δy of the function $y=e^{x^{2}}$ as x goes from 1 to 0.

Sample Solution We have $\Delta y=f(b)-f(a)=e^{0}-e^{1}=1-e$
Also, $d y=f^{\prime}(a) d x=f^{\prime}(a)(b-a)$
Here, $f^{\prime}(x)=2 x e^{x^{2}}$, and $a=1$ so $f^{\prime}(a)=f^{\prime}(1)=2(1) e^{1^{2}}=2 e$.
Thus, $d y=f^{\prime}(a)(b-a)=2 e(0-1)=-2 e$.

