Remember to show all of your work.

Problem 1. Let $f(x)=x^{3} e^{x}$
(a) Find all critical points of $f(x)$.

Sample Solution: critical points are when $f^{\prime}(x)=0$ or when $f^{\prime}(x)=$ undefined. Thus, step 1 is to find the derivative:

$$
f^{\prime}(x)=3 x^{2} e^{x}+x^{3} e^{x}=x^{2} e^{x}(3+x)
$$

Note that this is never undefined, so we only need to find where $f^{\prime}(x)=0$:

$$
0=x^{2} e^{x}(3+x)
$$

Thus $x=0$ and $x=-3$ are critical points.
(b) Determine the intervals on which $f(x)$ is increasing or decreasing.

Sample Solution: here's where we need to plug a number from each interval into the derivative and check it's sign.

Number in $(-\infty,-3): f^{\prime}(-4)=(-4)^{2} e^{-4}(3+(-4))=\frac{-16}{e^{4}}<0$
Number in $(-3,0): f^{\prime}(-1)=(-1)^{2} e^{-1}(3+(-1))=\frac{2}{e}>0$
Number in $(0, \infty): f^{\prime}(1)=(1)^{2} e^{1}(3+1)=4 e>0$
Therefore, $f(x)$ is increasing on $(-3,0) \cup(0, \infty)$ and $f(x)$ is decreasing on $(-\infty,-3)$
(c) Find all inflection points of $f(x)$.

Sample Solution: Here we have to find the second derivative and determine when $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)=$ undefined.

$$
f^{\prime \prime}(x)=3 x^{2} e^{x}+6 x e^{x}+x^{3} e^{x}+3 x^{2} e^{x}=x e^{x}\left(x^{2}+6 x+6\right)
$$

Again, note that $f^{\prime \prime}(x)$ is never undefined. Thus, we need only consider when $f^{\prime \prime}(x)=0$:

$$
0=x e^{x}\left(x^{2}+6 x+6\right)
$$

Using the quadratic formula to factor gives that $x=0, x=-3 \pm \sqrt{3}$ are (potential) inflection points.

Problem 2. For each part below, answer "yes" or "no" and provide a short(!) explanation why.
(a) Does the Mean Value Theorem hold for $f(x)=\cos (x) \ln (x)$ on the interval $[0,2 \pi]$?

Sample Solution: here we have to check the two conditions of the Mean Value Theorem:

- $f(x)=\cos (x) \ln (x)$ is continuous on $[0,2 \pi]$
- $f(x)=\cos (x) \ln (x)$ is differentiable on $(0,2 \pi)$

Here, the first condition fails: $\cos (x)$ is continuous everywhere, but $\ln (x)$ is continuous on the open interval $(0, \infty)$. Thus, the Mean Value Theorem does not hold.

Sample acceptable answer: The MVT fails because $f(x)$ is not continuous on $[0,2 \pi]$.
(b) Does Rolle's Theorem hold for $f(x)=x-\frac{1}{x}$ on the interval $[1,2]$?

Sample Solution: here we have to check the three conditions of Rolle's theorem:

- $f(x)=x-\frac{1}{x}$ is continuous on $[1,2]$
- $f(x)=x-\frac{1}{x}$ is differentiable on $(1,2)$
- $f(1)=f(2)$

The first condition is clear: x is continuous everywhere and $\frac{1}{x}$ is continuous on $(0, \infty)$, so $f(x)$ is continuous on $[1,2]$.

The second condition is a little less clear: take the derivative and make sure it's defined on the interval we're considering.

$$
f^{\prime}(x)=1+\frac{1}{x^{2}}
$$

Now $f^{\prime}(x)$ is defined on $(\infty, 0) \cup(0, \infty)$. Therefore, $f^{\prime}(x)$ is defined on $(1,2)$ and thus is differentiable.

For the third condition, we just need to evaluate the function.

$$
\begin{aligned}
& f(1)=1-\frac{1}{1}=0 \\
& f(2)=2-\frac{1}{2}=1.5
\end{aligned}
$$

Thus, $f(1) \neq f(2)$. Therefore Rolle's theorem does not hold.
Sample acceptable answer: Rolle's Theorem fails because $f(a) \neq f(b)$ for the interval [1, 2].
Sample acceptable answer: Rolle's Theorem fails because $f(1) \neq f(2)$.

