Remember to show all of your work.

Problem 1. Determine the following limits, or write DNE:
(a) (2 points) $\lim _{x \rightarrow 5} \frac{1}{x-5}$

Sample Solution: Here we have to check the left- and right-hand limits separately.
Consider $\lim _{x \rightarrow 5^{-}} \frac{1}{x-5}$. We'll take $x=4.5,4.9$, and 4.99.
Let $x=4.5$, then $\frac{1}{x-5}=\frac{1}{4.5-5}=\frac{1}{-0.5}=-2$.
Let $x=4.9$, then $\frac{1}{x-5}=\frac{1}{4.9-5}=\frac{1}{-0.1}=-10$.
Let $x=4.99$, then $\frac{1}{x-5}=\frac{1}{4.99-5}=\frac{1}{-0.01}=-100$.
Repeating this process gives $\lim _{x \rightarrow 5^{-}} \frac{1}{x-5}=-\infty$
Now consider $\lim _{x \rightarrow 5^{+}} \frac{1}{x-5}$. We'll take $x=5.5,5.1$, and 5.01.
Let $x=5.5$, then $\frac{1}{x-5}=\frac{1}{5.5-5}=\frac{1}{0.5}=2$.
Let $x=5.1$, then $\frac{1}{x-5}=\frac{1}{5.1-5}=\frac{1}{0.1}=10$.
Let $x=5.01$, then $\frac{1}{x-5}=\frac{1}{5.01-5}=\frac{1}{0.01}=100$.
Repeating this process gives $\lim _{x \rightarrow 5^{+}} \frac{1}{x-5}=\infty$
Thus,

$$
\lim _{x \rightarrow 5^{-}} \frac{1}{x-5}=-\infty \neq \infty=\lim _{x \rightarrow 5^{+}} \frac{1}{x-5}
$$

and because the left- and right-hand limits are different, $\lim _{x \rightarrow 5} \frac{1}{x-5}$ does not exist.
(b) (2 points) $\lim _{x \rightarrow 1} \frac{4}{(x-1)^{2}}$

Sample Solution: Similarly, here we also have to check the left- and right-hand limits separately.

Consider $\lim _{x \rightarrow 1^{-}} \frac{4}{(x-1)^{2}}$. We'll take $x=0.5,0.9$, and 0.99.
Let $x=0.5$, then $\frac{4}{(x-1)^{2}}=\frac{4}{(0.5-1)^{2}}=\frac{4}{(-0.5)^{2}}=\frac{4}{0.25}=16$.
Let $x=0.9$, then $\frac{4}{(x-1)^{2}}=\frac{4}{(0.9-1)^{2}}=\frac{4}{(-0.1)^{2}}=\frac{4}{0.01}=400$.
Let $x=0.99$, then $\frac{4}{(x-1)^{2}}=\frac{4}{(0.99-1)^{2}}=\frac{4}{(-0.01)^{2}}=\frac{4}{0.0001}=40000$.
Repeating this process gives $\lim _{x \rightarrow 1^{-}} \frac{4}{(x-1)^{2}}=\infty$
Now consider $\lim _{x \rightarrow 1^{+}} \frac{4}{(x-1)^{2}}$. We'll take $x=1.5,1.1$, and 1.01.

$$
\text { Let } x=1.5 \text {, then } \frac{4}{(x-1)^{2}}=\frac{4}{(1.5-1)^{2}}=\frac{4}{(0.5)^{2}}=\frac{4}{0.25}=16 \text {. }
$$

Let $x=1.1$, then $\frac{4}{(x-1)^{2}}=\frac{4}{(1.1-1)^{2}}=\frac{4}{(0.1)^{2}}=\frac{4}{0.01}=400$.
Let $x=1.01$, then $\frac{4}{(x-1)^{2}}=\frac{4}{(1.01-1)^{2}}=\frac{4}{(0.01)^{2}}=\frac{4}{0.0001}=40000$.
Repeating this process gives $\lim _{x \rightarrow 1^{+}} \frac{4}{(x-1)^{2}}=\infty$
Thus,

$$
\lim _{x \rightarrow 1^{-}} \frac{4}{(x-1)^{2}}=\infty=\lim _{x \rightarrow 1^{+}} \frac{4}{(x-1)^{2}}
$$

and because the left- and right-hand limits are the same, $\lim _{x \rightarrow 1} \frac{4}{(x-1)^{2}}=\infty$.

Problem 2. Use the graph below to determine the following limits, or write DNE. Assume lines off the graph go to ∞ or $-\infty$. (1 point each):

(a) $\lim _{x \rightarrow-4}$
(b) $\lim _{x \rightarrow-3}$
(c) $\lim _{x \rightarrow 0}$
(d) $\lim _{x \rightarrow 1}$
(e) $\lim _{x \rightarrow 3}$
(f) $\lim _{x \rightarrow 6}$

Sample Solutions

(a) $\lim _{x \rightarrow-4}=0$
(b) $\lim _{x \rightarrow-3}=$ DNE, because $\lim _{x \rightarrow-3^{-}}=\infty$ and $\lim _{x \rightarrow-3^{+}}=-\infty$
(c) $\lim _{x \rightarrow 0}=0$
(d) $\lim _{x \rightarrow 1}=1$
(e) $\lim _{x \rightarrow 3}=$ DNE, because $\lim _{x \rightarrow 3^{-}}=3$ and $\lim _{x \rightarrow 3^{+}}=2$
(f) $\lim _{x \rightarrow 6}=-\infty$

