Remember to show all of your work.

Problem 1. Find $\lim _{x \rightarrow 0} 2 x^{2} \sin \left(\frac{4}{x^{2}}\right)$
Sample Solution: This problem is all about using the Squeeze Theorem. Consider that sin is a bounded function, i.e. $-1 \leq \sin (\alpha) \leq 1$ for any function or number α. Therefore, we have

$$
\begin{gathered}
-1 \leq \sin \left(\frac{4}{x^{2}}\right) \leq 1 \\
-2 x^{2} \leq 2 x^{2} \sin \left(\frac{4}{x^{2}}\right) \leq 2 x^{2} \\
\lim _{x \rightarrow 0}-2 x^{2} \leq \lim _{x \rightarrow 0} 2 x^{2} \sin \left(\frac{4}{x^{2}}\right) \leq \lim _{x \rightarrow 0} 2 x^{2}
\end{gathered}
$$

Now, direct substitution on the left and right sides of the inequality yields

$$
0 \leq \lim _{x \rightarrow 0} 2 x^{2} \sin \left(\frac{4}{x^{2}}\right) \leq 0
$$

and thus $\lim _{x \rightarrow 0} 2 x^{2} \sin \left(\frac{4}{x^{2}}\right)=0$ by the Squeeze Theorem.

Problem 2. Evaluate $\lim _{x \rightarrow 1} \frac{-x^{2}+2 x-1}{|x-1|}$.
Sample Solution Here because we're dealing with an absolute value, it's necessary to construct a piecewise function. Consider

$$
x-1=0 \rightarrow x=1
$$

so the split in our piecewise function will be at $x=1$. Thus, we have

$$
\lim _{x \rightarrow 1} \frac{-x^{2}+2 x-1}{|x-1|}=\left\{\begin{array}{l}
\lim _{x \rightarrow 1} \frac{-x^{2}+2 x-1}{x-1} \text { for } x \geq 1 \\
\lim _{x \rightarrow 1} \frac{-x^{2}+2 x-1}{-(x-1)} \text { for } x<1
\end{array}\right.
$$

Now we have to consider the left- and right-side limits.

Taking the limit from the right, we use the top part of our piecewise function (i.e. for $x \geq 1$):

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} \frac{-x^{2}+2 x-1}{|x-1|} & =\lim _{x \rightarrow 1^{+}} \frac{-x^{2}+2 x-1}{x-1} \\
& =\lim _{x \rightarrow 1^{+}} \frac{(-x+1)(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1^{+}}-x+1 \\
& =-(1)+1 \\
& =0
\end{aligned}
$$

Taking the limit from the left, we use the bottom part of our piecewise function (i.e. for $x<1$):

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \frac{-x^{2}+2 x-1}{|x-1|} & =\lim _{x \rightarrow 1^{-}} \frac{-x^{2}+2 x-1}{-(x-1)} \\
& =\lim _{x \rightarrow 1^{-}} \frac{(-x+1)(x-1)}{-x+1} \\
& =\lim _{x \rightarrow 1^{-}} x-1 \\
& =(1)-1 \\
& =0
\end{aligned}
$$

Thus, because the left- and right-side limits equal,

$$
\lim _{x \rightarrow 1} \frac{-x^{2}+2 x-1}{|x-1|}=0
$$

