Remember to show all of your work.

Problem 1. Find $\lim _{x \rightarrow \infty} \frac{3 x^{2}}{(2 x-1)^{2}}$
Sample Solution: Consider

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{(2 x-1)^{2}}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{4 x^{2}-4 x+1}
$$

Now, trying direct substitution yields $\frac{\infty}{\infty}$, so we have to simplify a bit more. Here, we'll utilize the trick of dividing by the highest power of x in the problem, which here is x^{2}. We have

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}}{4 x^{2}-4 x+1}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}}{\frac{4 x^{2}-4 x+1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}}{\frac{4 x^{2}}{x^{2}}-\frac{4 x}{x^{2}}+\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{3}{4-\frac{4}{x}+\frac{1}{x^{2}}}
$$

Note that as $x \rightarrow \infty, \frac{4}{x} \rightarrow 0$ and $\frac{1}{x^{2}} \rightarrow 0$, and thus

$$
\lim _{x \rightarrow \infty} \frac{3}{4-\frac{4}{x}+\frac{1}{x^{2}}}=\frac{3}{4-0-0}=\frac{3}{4}
$$

Problem 2. Given $s(t)=t^{2}+5$, find

- The average velocity from $t=3$ to $t=4$
- The instantaneous velocity at $t=3$.

Sample Solution: First, we utilize the formula for average velocity: $\frac{s(b)-s(a)}{b-a}$. Based on the problem, we have

- $a=3$
- $b=4$
- $s(a)=s(3)=3^{2}+5=14$
- $s(b)=s(4)=4^{2}+5=21$

And thus, plugging in to the formula gives

$$
\frac{s(b)-s(a)}{b-a}=\frac{21-14}{4-3}=\frac{7}{1}=7
$$

So the average velocity from $t=3$ to $t=4$ is 7 .

Option 1: Now, to find instantaneous velocity we utilize the formula $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$ (you may have seen this formula before with Δx and f; this is the same formula, just using the variables given in the problem.) We have:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h} & =\lim _{h \rightarrow 0} \frac{\left[(t+h)^{2}+5\right]-\left[t^{2}+5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[t^{2}+2 t h+h^{2}+5\right]-\left[t^{2}+5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{t^{2}+2 t h+h^{2}+5-t^{2}-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 t h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 t+h \\
& =2 t
\end{aligned}
$$

But now, remember that the problem is asking about time $t=3$. Therefore, the instantaneous velocity at $t=3$ is 6 .

Option 2: Now, to find instantaneous velocity we utilize the formula $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$ at time $t=3$ (you may have seen this formula before with Δx and f; this is the same formula, just using the variables given in the problem.) We have:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{s(3+h)-s(3)}{h} & =\lim _{h \rightarrow 0} \frac{\left[(3+h)^{2}+5\right]-\left[3^{2}+5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3^{2}+6 h+h^{2}+5\right]-\left[3^{2}+5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}+5-9-5}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 6+h \\
& =6
\end{aligned}
$$

Therefore, the instantaneous velocity at $t=3$ is 6 .

