Remember to show all of your work.

Problem 1. Find the derivative of each of the following functions (no need to simplify your answer)

- $f(x)=\frac{x^{4}+3 x^{2}-x+16}{3 e^{x}}$

Sample Solution Here, we'll use the quotient rule.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{3 e^{x} * \frac{d}{d x}\left(x^{4}+3 x^{2}-x+16\right)-\frac{d}{d x}\left(3 e^{x}\right) *\left(x^{4}+3 x^{2}-x+16\right)}{\left(3 e^{x}\right)^{2}} \\
& f^{\prime}(x)=\frac{\left(3 e^{x}\right)\left(4 x^{3}+6 x-1\right)-\left(3 e^{x}\right)\left(x^{4}+3 x^{2}-x+16\right)}{9 e^{2 x}}
\end{aligned}
$$

- $f(x)=\cos (x) \cot (x)$

Sample Solution Here, we'll use the product rule.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}(\cos (x)) * \cot (x)+\cos (x) * \frac{d}{d x}(\cot (x)) \\
& f^{\prime}(x)=-\sin (x) \cot (x)-\cos (x) \csc ^{2}(x)
\end{aligned}
$$

Problem 2. Find the equation of the tangent line of the function $f=2 \sqrt{x}$ at $x=9$

There's two steps here: find the point, and find the slope.
We already have the x value for the point, so we just need to find the y value:

$$
f(9)=2 \sqrt{9}=2 * 3=6
$$

Therefore, the point is $(9,6)$.
Now we have to find the slope of the tangent line: this comes from finding the derivative and plugging in the x value.

$$
\begin{aligned}
f(x) & =2 x^{1 / 2} \\
f^{\prime}(x) & =2 *(1 / 2) x^{-1 / 2} \\
f^{\prime}(x) & =\frac{1}{\sqrt{x}} \\
f^{\prime}(9) & =\frac{1}{\sqrt{9}}=\frac{1}{3}
\end{aligned}
$$

so the slope is $m=\frac{1}{3}$. Thus,

$$
\begin{gathered}
y-6=\frac{1}{3}(x-9) \\
y=\frac{1}{3} x+3
\end{gathered}
$$

