Remember to show all of your work.

Problem 1. Find the derivative of $y=\tan (x)^{e^{x}}$ (Solve for y^{\prime}, but no need to simplify).

Sample Solution: Here, I definitely recommend using logarithmic differentiation. Therefore, we start by taking the \ln of both sides:

$$
\ln (y)=\ln \left(\tan (x)^{e^{x}}\right)
$$

and now we can utilize logarithm rules to move the exponent out front:

$$
\ln (y)=e^{x} \ln (\tan (x))
$$

And now we can derive, utilizing a combination of product and chain rule:

$$
\begin{aligned}
\frac{1}{y} * y^{\prime} & =\frac{d}{d x} e^{x} * \ln (\tan (x))+e^{x} * \frac{d}{d x} \ln (\tan (x)) \\
& =e^{x} \ln (\tan (x))+e^{x} \frac{1}{\tan (x)} * \sec ^{2}(x) \\
& =e^{x} \ln (\tan (x))+\frac{e^{x} \sec ^{2}(x)}{\tan (x)}
\end{aligned}
$$

Note that $\frac{d}{d x} \ln (\tan (x))$ requires chain rule to solve. Now, we have to solve for y^{\prime} :

$$
\begin{aligned}
\frac{1}{y} * y^{\prime} & =e^{x} \ln (\tan (x))+\frac{e^{x} \sec ^{2}(x)}{\tan (x)} \\
y^{\prime} & =\left(e^{x} \ln (\tan (x))+\frac{e^{x} \sec ^{2}(x)}{\tan (x)}\right) y \\
& =\left(e^{x} \ln (\tan (x))+\frac{e^{x} \sec ^{2}(x)}{\tan (x)}\right) \tan (x)^{e^{x}}
\end{aligned}
$$

where in the last line we substitute the original expression in for y.

Problem 2. A particle is moving on a line with position given by

$$
s(t)=\frac{1}{3} t^{3}-2 t^{2}-5 t+1
$$

Find the values of t where

- the particle is standing still
- the particle is moving forward
- the particle is moving backward

This problem is all about determining values having to do with the velocity. We start by deriving to find the velocity:

$$
\begin{aligned}
s(t) & =\frac{1}{3} t^{3}-2 t^{2}-5 t+1 \\
\longrightarrow v(t) & =t^{2}-4 t-5 \\
& =(t+1)(t-5)
\end{aligned}
$$

Therefore, we can answer (a) from here: the velocity is zero at $t=-1$ and $t=5$, but remember that we don't consider negative time. Therefore, the particle is still at $t=5$.

Now, to find where the particle is moving backwards, we have to pick numbers on either side of $t=5$ and see if the values of the velocity are positive or negative. Consider:

$$
\begin{gathered}
t=1 \longrightarrow v(t)=(1)^{2}-4(1)-5=-8<0 \text {, so backwards } \\
t=6 \longrightarrow v(t)=(6)^{2}-4(6)-5=7>0, \text { so forwards }
\end{gathered}
$$

Therefore, for any t values less than 5 , the particle moves backwards (i.e. $0 \leq t<5$, i.e. [0,5)) and for any t values greater than 5 , the particle moves forwards (i.e. $t>5$, i.e. $(5, \infty)$).

